
How-To: Use of the FV Time Manager on
Windows, Linux and other platforms through

its command line interface

Formal Vindications S.L.∗

September, 2022

∗Project funded by the Spanish Ministry of Science, Innovation and Universities, the State Agency for
Research and the European Regional Development Fund (ERDF).

Contents

1 Preface 4
1.1 Context . 4
1.2 File structure . 4

1.2.1 About the wrapper code . 4
1.3 Compilation and installation . 5

1.3.1 Compilation . 5
1.3.2 Using the executable . 6
1.3.3 About esy . 6

1.4 Usage . 7
1.5 The UTC standard . 7
1.6 A new notion for consistent time arithmetic . 8

1.6.1 Shift functions . 9
1.6.2 Add-formal functions . 9

1.7 The Coq Time Library: Main features . 10

2 Definitions 11
2.1 type int63 . 11
2.2 type bool . 11
2.3 type weekday . 11
2.4 type date . 11
2.5 type time . 11
2.6 type clock . 12
2.7 type formalTime . 12
2.8 type coq error . 13
2.9 type format error . 15
2.10 fun is leap year . 16
2.11 fun days of month . 16
2.12 fun max second . 16
2.13 fun valid date . 17
2.14 fun valid time . 17
2.15 fun version date . 17
2.16 fun date of time . 18
2.17 fun clock of time . 18
2.18 fun second . 18
2.19 fun minute . 18
2.20 fun hour . 19
2.21 fun day . 19
2.22 fun month . 19
2.23 fun year . 19
2.24 fun weekday of date . 19
2.25 fun utc timestamp . 20
2.26 fun from utc timestamp . 20
2.27 fun le date . 20
2.28 fun lt date . 21

2

2.29 fun le time . 21
2.30 fun lt time . 21
2.31 fun from formalTime . 21
2.32 fun to formalTime . 22
2.33 fun add formal . 22
2.34 fun subtract formal . 22
2.35 fun shift utc seconds . 23
2.36 fun add formal seconds . 23
2.37 fun shift utc minutes . 23
2.38 fun add formal minutes . 24
2.39 fun shift utc hours . 24
2.40 fun add formal hours . 24
2.41 fun shift utc days . 25
2.42 fun add formal days . 25
2.43 fun shift utc months . 25
2.44 fun add formal months . 26
2.45 fun shift utc years . 26
2.46 fun add formal years . 27
2.47 fun time difference . 27
2.48 fun sec time difference . 27

3

1 Preface

1.1 Context

The FV Time Library is a Coq-verified implementation of the UTC standard with some extra
utilities to make it more usable for both critical and regular programming. Currently, this
library is only available in the OCaml language1. In order to make the power of the Time
Library available from almost any computer environment, we have developed the FV Time
Manager, which is a standalone executable (available for Linux and Windows) that allows
us to interact with the Time Library from the command line. In this document, we give
instructions on how to install and use the Time Manager.

1.2 File structure

The files directly extracted from Coq to OCaml, and thus verified, are FVTM.ml (the code itself)
and FVTM.mli (the headers). They can be used directly as OCaml libraries, but in order to use
them from other programming languages or from the command line, it is necessary to interface
with some code, which can be called command line interface or simply wrapper (which is non-
verified). Any user can write their own wrapper, but we provide one. Below we describe the
files and what each of them does.

• FVTM.ml, FVTM.mli: The code and headers extracted directly from Coq.
• uint63.ml, uint63.mli: The code and headers provided by Coq for the extraction to
OCaml’s primitive machine integers.

• timemanager.ml: The wrapper or command line interface, non-verified.

In Section Usage we present the documentation of the functions offered by timemanager.ml.

1.2.1 About the wrapper code

The file timemanager.ml contains only data handling, in particular it takes care of:

• the input/output (converting from datatypes to string and viceversa, i.e., serialization
and deserialization);

• converting the Coq type that expresses errors (due to invalid inputs) to OCaml exceptions
that throw understandable error messages.

As an observation, recall that the compilation process is not itself verified, and neither is the
file timemanager.ml. However, this file does not introduce a big probability of bugs, due to
its simplicity.

Any user can write their own wrapper by looking at the Coq documentation of the extracted
functions. We provide this wrapper just for the convenience of the user, but it is not part of
the verified project.

1As of now, we only extract to OCaml because it is the only language that has plans to have a verified extraction
process. We refer the reader to the specification of time library for more information.

4

https://coq.inria.fr/
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://formalvindications.com/pdf/FormalVindicationsTimeManager-TechnicalSpecificationV2.1.pdf

1.3 Compilation and installation

In this section we describe how we obtained the executable file from the code. If the reader
wishes to compile their code, they can use this explanation as a guide to compile the code on
their machine.

1.3.1 Compilation

Here we describe the procedure that we follow in order to compile the code. This procedure
works for both Linux and Windows (tested on Windows 10). The code files involved are the
described in the previous section.

The steps that we follow to compile the code are the following:

1. First, we make sure that esy is installed. If not, we follow the instructions to install it.
In section About esy we briefly explain how esy works and why it is safe to use it.

2. Then, on the root of the project, we run the following command in the terminal.

esy install

If we are on Windows, we run the previous command on a terminal with administrator
privileges.

Esy automatically installs the right version of the OCaml compiler, installs all the nec-
essary dependencies and compiles the FV Time Manager. Below there is a schema that
showcases the components involved in the compilation process.

Figure 1.1: Compilation schema.

3. Finally, we are able to run the FV Time Manager with the following command.

esy x timemanager

This leaves the program waiting for queries from the user. To print on screen basic
instructions on how to interact with it from the command line, we can type:

--usage

5

https://esy.sh/
https://esy.sh/docs/en/getting-started.html

If we want to specify a function and arguments, we write the name of the function and
the arguments. For example:

from_utc_timestamp 1234567

After we have compiled the program, we have generated the executable timemanager.exe
placed in the following path:

<compilation path> esy/default/build/default/timemanager.exe

1.3.2 Using the executable

Windows

Once the executable is placed in the desired directory, it can be run from a command line with
administrator privileges by typing:

timemanager.exe

If we want to make a query we will write it followed by an end-of-line character:

utc_timestamp 2021-12-01-15:45:32

All available functions are listed and documented later in this document.

Linux

Once the executable is placed in the desired directory, it can be run from a command line by
typing:

./timemanager.exe

If we want to make a query we will write it followed by an end-of-line character:

utc_timestamp 2021-12-01-15:45:32

All available functions are listed and documented later in this document.

1.3.3 About esy

Esy is a tool which automates the process of downloading the proper version of the OCaml
compiler (ocamlc), installing the necessary dependencies in an isolated environment and run-
ning the generated executable in that environment. It is important to emphasize that esy does
not make any change to the OCaml code, hence, it is impossible that it introduces bugs in it.

We use it because it is a convenient tool to automatize and homogenize the compilation process
in Linux and Windows.

6

1.4 Usage

As we have already pointed out, we call a function by appending its name and arguments on
the same command.

Let’s take a concrete example:

fun shift_utc_seconds : time → int63 → time

The above type signature means that the function shift utc seconds takes two arguments.
The first argument is of type time and the second of type int63. The result is of type time.

Then, since 2021-12-31-23:23:50 is a valid time and 10 a valid int63 we can perform a call
to the Time Manager using the following command depending on the installation method used:

• Using esy:

esy x timemanager

shift_utc_seconds 2021-12-31-23:59:50 10

• Using the .exe file:

timemanager.exe

shift_utc_seconds 2021-12-31-23:59:50 10

As expected the answer will be 2022-01-01-00:00:00, which is a valid time.

Sometimes it is convenient to give names to arguments so we can refer to them by name in the
documentation. We use the syntax (name : type) to denote named arguments. Named argu-
ments are only for documentation purposes. In other words, the following function definition
is equivalent to the previous definition.

fun shift_utc_seconds : (some_time : time) → (offset : int) → time

Most functions have conditions on one or several arguments. If the conditions are not respected,
the function will throw an error message.

The usage message can be printed by:

--usage

It is also possible to see the version number of the library and the date of its last update, which
may be relevant to know when the leap seconds were updated:

--version

1.5 The UTC standard

The UTC (Coordinated Universal Time) is the most widespread standard for measuring and
representing points in time. The counting of time is done according to atomic clocks.

UTC uses the Gregorian calendar to count days, which is the usual calendar: it accounts for
the year, the month and the day within the month. Some years are leap and have an extra day
in February according to the rule:

7

https://en.wikipedia.org/wiki/Gregorian_calendar

• Every year divisible by 400 is a leap year.
• Every year divisible by 4 but not by 100 is also a leap year.
• No other year is a leap year.

Seconds are counted following an atomic clock, i.e. all seconds have the exact same duration.
But, since the Earth’s rotation period slightly varies due to physical interactions, not all solar
days have a duration of 86400 SI seconds. If no adjustment was made, the solar time would
gradually differ from UTC. To avoid this effect, the UTC standard introduces leap seconds.

Leap seconds are introduced by a committee of experts (IERS) with at least six months of
advance, and are impredictable in the long term. The only way to account for them is keeping
an updated list of the past leap seconds. Theoretically, leap seconds can be positive (if added)
or negative (if removed), but since the Earth tends to slow down, no negative leap second has
ever happened.

The standard says that, when it occurs, a positive leap second is inserted between second
23:59:59 of a chosen UTC calendar date and second 00:00:00 of the following date. The defi-
nition of UTC states that the last day of December and June are preferred, with the last day
of March or September as second preference, and the last day of any other month as third
preference. All leap seconds (as of 2017) have been scheduled for either June 30 or December
31. The extra second is displayed on UTC clocks as 23:59:60. A negative leap second would
suppress second 23:59:59 of the last day of a chosen month, so that second 23:59:58 of that
date would be followed immediately by second 00:00:00 of the following date.

Although the UTC standard includes the format Y-M-D-h:m:s, time by atomic clocks is actually
counted as a number of seconds (units of time) elapsed since some chosen point of time called
epoch. This number of seconds is called timestamp. The most common epoch used, and the
one our library chooses, is 1970-01-01-00:00:00. Then by definition its timestamp is 0 and any
other timestamp starts counting from that time on.

UTC differs from International Atomic Time (TAI) by 37, the number of leap seconds that
have been added. Most computer systems claim to implement UTC or GMT (which is not an
official name) but actually implement TAI, or Unix, which is equal to UTC not counting leap
seconds.

1.6 A new notion for consistent time arithmetic

Practically all commercial libraries for dealing with times and timestamps use Unix, even if
they claim to use UTC. When adding and subtracting durations or time intervals to a given
time, an issue arises due to the irregular periods that the Gregorian calendar and UTC define.
For systems that work in Unix, the issue arises with months and years, because they don’t have
a constant duration. What these libraries do is to define an artificial operation on months and
years that doesn’t respect basic arithmetical properties.

They define adding a month as adding one to the month component of the time. But of course,
the result of this operation is not always correct. For example, adding a month in this sense
to 2009-01-31-14:32:54 yields 2009-02-31-14:32:54, which is not a valid time because
February doesn’t have 31 days. Then, the adopted solution is correct the wrong component by
going back to the previous valid one, so the result would be 2009-02-28-14:32:54. Similarly,
they can add any number to the month component, carrying to the year if necessary, and then
correct the wrong component. For example, adding 24 months to 2008-02-29-15:00:00 gives
2010-02-28-15:00:00. Analogously, the operation for adding years is defined.

This operation does not behave as addition does. For example, if in the first example we sub-

8

tract one month to the result, we don’t get the original time. Instead, we get 2009-01-28-14:32:54.
We can say that 1 − 1 ̸= 0!

Our library uses UTC, which means that this problem affects all the components to the left of
seconds. Not all minutes have the same duration, nor all hours, nor all days. Our solution is to
implement two different types of operations in time arithmetic. The first one, that we call shift
functions, follows the same logic that other libraries follow with months and years, but with all
the components. The second one is a definition of a new standard for durations called formal
time, and operations called add-formal with it that behave consistently with basic arithmetical
properties.

1.6.1 Shift functions

In that context, we extrapolate the logic described above for months and years of libraries
working in Unix to the rest of the components for the UTC case. The shift function shifts
a component of the time, carrying to the left if necessary, and then if the result is invalid
performs corrections on the wrong component(s) to give a specific close previous valid time.

An example would be subtracting two days to the time 2016-12-31-23:59:60 (a leap second).
With the procedure above before the correction, the result is 2016-12-29-23:59:60. Since on
that date there was no leap second, a correction must be performed on the wrong component
to give the previous valid time, hence the final result is 2016-12-29-23:59:59.

We chose the shift name because these functions are not proper addition. We call them
shift utc functions, and they have six instances: shift utc seconds, shift utc minutes,
shift utc hours, shift utc days, shift utc months, and shift utc years.

1.6.2 Add-formal functions

In order to have time arithmetic with the usual arithmetical properties, we have define a new
standard called formal time, that establishes standard durations for every component. A formal
second is an atomic second, and a formal minute is 60 formal seconds, etc. See formalTime

for all the details.

We have chosen to define formal months as 30 formal days. Therefore, adding a formal month
is a clear arithmetical operation, consisting in adding a constant number of seconds (30 * 24
* 60 * 60 seconds). In the example above, adding a formal month to 2009-01-31-14:32:54

yields 2009-03-02-14:32:54. The result is always valid by construction (except when it goes
beyond the minimum or maximum date).

Now, subtracting two formal days to the time 2016-12-31-23:59:60 yields 2016-12-30-00:00:00,
which lets us see that the constant 86400 cdot 2 has been subtracted.

We define these functions with the name add formal, and they have six instances: add formal seconds,
add formal minutes, add formal hours, add formal days, add formal months, and add formal years.
We also have the generic add formal and subtract formal.

These functions satisfy desirable arithmetical properties, for example if t1 + ∆t = t2, then
t2 −∆t = t1, i.e., 1 − 1 = 0.

Notice that the only add-formal function that behaves exactly as its shift counterpart is
add formal seconds, which is exactly the same as shift utc seconds.

9

1.7 The Coq Time Library: Main features

1. Fully formally verified using the Coq proof assistant.
2. Fully in UTC, including leap seconds.
3. Definition of the formal time standard: Durations are not well-defined in UTC, because

due to leap seconds minutes, hours, etc. do not have constant durations. Our library
solves two critical issues by introducing the formalTime standard for the time durations
in UTC:

• Give constant definitions for durations or time intervals, allowing to group durations
in units bigger than seconds consistently.

• Regarding time arithmetic, the library implements two kind of functions for ad-
dition and subtraction of time and durations.

– The shift utc functions work as is common in other libraries (the detailed
description is below). Since durations are not constant, they do not satisfy
certain basic arithmetical properties as the one described in the next item.

– The add formal functions are a new definition of addition and subtraction that
works with the formalTime standard, hence satisfy for a time t and integer n:
[Property of add formal functions:] add formal X (add formal X t n) -n =

t.
In an improper non-functional language, this means that if t1 + ∆t = t2, then
t2 −∆t = t1.

4. Includes a function to check the version number and last updated date. Different versions
may give different results due to the addition of leap seconds.

10

2 Definitions

2.1 type int63

type int63 = int

An int63 is a machine 63-bit integer. It can be used as signed or unsigned, depending on the
function. Each function controls the range of its input.

Unsigned integers range from 0 to 9223372036854775807.

Signed integers range from -4611686018427387904 to 4611686018427387903.

2.2 type bool

type bool = string

A string representing a truth-value, true or false.

2.3 type weekday

type weekday = string

A string with one of the following values: Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday or Sunday.

2.4 type date

type date = string

A string of the form Y-M-D. Valid values range from 1970-1-1 to 9999-12-31 and need to be
valid UTC dates in the sense of valid date.

As input, we allow both the 1970-01-01 and the 1970-1-1 formats. As output, we return the
latter. We choose that one because it is directly supported by the Coq native integer library,
and thus we avoid writing more code in the wrapper, which is non-verified.

2.5 type time

type time = string

11

A string of the form Y-M-D-h:m:s. Valid values range from 1970-1-1-00:00:00 to 9999-12-31-23:59:59
and need to be valid UTC times.

Depending on the system, a time needs to be written between double quotes to prevent issues
due to the middle space. For example, 1980-04-26-13:42:09.

As input, we allow both the 1970-01-01-00:00:00 and the 1970-1-1-0:0:0 formats. As
output, we return the latter. We choose that one because it is directly supported by the
Coq native integer library, and thus we avoid writing more code in the wrapper, which is
non-verified.

2.6 type clock

type clock = string

A string of the form h:m:s, where:

• 0 ≤ h ≤ 23
• 0 ≤ m ≤ 59
• 0 ≤ s ≤ 60 (because we account for leap seconds)

As input, we allow both the 00:00:00 and the 0:0:0 formats. As output, we return the latter.
We choose that one because it is directly supported by the Coq native integer library, and thus
we avoid writing more code in the wrapper, which is non-verified.

2.7 type formalTime

type formalTime = string

A string of the form fY-fM-fD-fh-fm-fs which expresses a time interval duration in formal
time units.

Formal time unit Duration

formal second 1 atomic second
formal minute 60 formal seconds
formal hour 60 formal minutes
formal day 24 formal hours
formal month 30 formal days
formal year 365 formal days

The value of each component is restricted to avoid overflowing the maximum int63 when
operating with a formalTime. The following must hold:

1. 0 ≤ fY ≤ 2924712086,
2. 0 ≤ fM ≤ 35583997055,
3. 0 ≤ fD ≤ 1067519911673,
4. 0 ≤ fh ≤ 25620477880152,
5. 0 ≤ fm ≤ 1537228672809129,
6. 0 ≤ fs ≤ 92233720368547757.

12

These are the only restrictions for a formalTime when given as input. As output, a formalTime
is always given in normal form, meaning that the components satisfy the following conditions
too:

• fs < 60,
• fm < 60,
• fh < 24,
• fd < 30,
• fm ≤ 12, and if fd ≥ 5 then fm < 12.

This last condition is because 12 formal months are 360 formal days, less than a formal year.
Thus, it is allowed to say 0-12-4-0-0-0, but if we want to add one more formal day, then the
expression becomes 1-0-0-0-0-0.

2.8 type coq error

type coq_error =

InvalidDate {
d : date

}
| InvalidTime {

t : time

}
| InvalidFormalTime {

ft : formalTime

}
| InvalidYear {

y : int63

}
| InvalidMonth {

m : int63

}
| InvalidDay {

yr : int63

; mth : int63

; dy : int63

}
| InvalidHour {

h : int63

}
| InvalidMinute {

min : int63

}
| InvalidSecond {

dt : date

; hr : int63

; mn : int63

; sec : int63

}
| InvalidClockSecond {

cs : int63

13

}
| NumberOutOfBounds {

n : int63

}
| Overflow

| InvalidOrderOfTimes {
t1 : time

; t2 : time

}

These errors are handled by Coq through a sum type that gives different constructors for
different error messages.

Next to each error that the Coq code gives there is the error message that the wrapper writes:

Constructors

InvalidDate Coq error is sent by the wrapper to error message:

Input d is invalid. Only dates in UTC (starting in 1970, ending in 9999) are accepted

d : date.

InvalidTime Coq error is sent by the wrapper to error message:

Input t is invalid. Only times in UTC (with leap seconds and starting in 1970, ending in
9999) are accepted

t : time.

InvalidFormalTime Coq error is sent by the wrapper to error message:

Input ft is invalid. Either some component is negative, or it is too big and would cause
overflow

ft : formalTime.

InvalidYear Coq error is sent by the wrapper to error message:

Input y is invalid. Only years between 1970 and 9999 are accepted

y : int63.

InvalidMonth Coq error is sent by the wrapper to error message:

Input m is invalid. Months are a number between 1 and 12

m : int63.

InvalidDay Coq error is sent by the wrapper to error message:

Input dy is invalid. In yr, month mth, days range between 1 and days of month yr mth

yr : int63.

mth : int63.

dy : int63.

InvalidHour Coq error is sent by the wrapper to error message:

Input h is invalid. Hours are a number between 0 and 23

h : int63.

InvalidMinute Coq error is sent by the wrapper to error message:

Input min is invalid. Minutes are a number between 0 and 59

14

min : int63.

InvalidSecond Coq error is sent by the wrapper to error message:

Input sec is invalid. On dt at hr:=mn=, seconds range between 0 and max second dt

hr mn
dt : date.

hr : int63.

mn : int63.

sec : int63.
InvalidClockSecond Coq error is sent by the wrapper to error message:

Input cs is invalid. Clock seconds are a number between 0 and 60

cs : int63.

NumberOutOfBounds Coq error is sent by the wrapper to error message:

Input n is out of bounds. Operating with it would lead to overflow the minimum or
maximum time

n : int63.

Overflow Coq error is sent by the wrapper to error message:

Overflow: with the input you gave, the resulting time would be before 1970 or after 9999

InvalidOrderOfTimes Coq error is sent by the wrapper to error message:

The first input t1 is smaller than the second input t2. Time difference can only be
computed if the first argument is greater than the second one

t1 : time.

t2 : time.

2.9 type format error

type format_error =

InvalidDateFormat

| InvalidTimeFormat

| InvalidFormalTimeFormat

| InvalidInt63Format

| UnrecognizedInput

These errors are not handled by the functions nor by Coq, since they are errors on the format
of the input that only the wrapper can detect and handle.

Next to each kind of format error there is the message that the wrapper gives:

Constructors

InvalidDateFormat The date is not given in the correct format. Error message:

A date in the format Y-M-D was expected

InvalidTimeFormat The time is not given in the correct format. Error message:

A time in the format Y-M-D-h:m:s was expected

15

InvalidFormalTimeFormat The formalTime is not given in the correct format. Error message:

A formal time in the format Y-M-D-h-m-s with non-negative components was expected

InvalidInt63Format The int63 is not given in the correct format. Error message:

An integer representable by OCaml’s int63 was expected. Either the input is not an
integer at all, or it is too big or too small for our language representation

UnrecognizedInput The input is not recognized at all. The name of the function may not
exist or receive different inputs. Error message:

The input was not recognized. Either that function does not exist or it receives differently
formatted (or a different number of) inputs.

In order to see the usage, run –usage

2.10 fun is leap year

fun is_leap_year : (year : int63) → bool

Returns true if year is a leap year in the Gregorian calendar and false otherwise.

Errors:

• InvalidYear if not 1970 ≤ year ≤ 9999

Use examples:

• is leap year 1984 = true

• is leap year 1973 = false

2.11 fun days of month

fun days_of_month : (year : int63) → (month : int63) → int63

The number of days of a month with respect to that year.

Errors:

• InvalidYear if not 1970 ≤ year ≤ 9999
• InvalidMonth if not 1 ≤ month ≤ 12

Use examples:

• days of month 1973 2 = 28

• days of month 1984 2 = 29

• days of month 1984 5 = 31

2.12 fun max second

fun max_second : (d : date) → (hour : int63) → (minute : int63) → int63

Returns the maximum value of the second for a given date at that hour and minute. Thus,
the possible outcomes will be 59 for a regular minute, 60 for a positive leap second and 58 for

16

a negative leap second.

Errors:

• InvalidDate if valid date d = false

• InvalidHour if not 0 ≤ hour ≤ 23
• InvalidMinute if not 0 ≤ minute ≤ 59

Use examples:

• max second 2009-10-03 14 32 = 59

• max second 2016-12-31 23 59 = 60

2.13 fun valid date

fun valid_date : date → bool

Checks for the validity of a date in UTC. Given a date Y-M-D, valid or invalid, returns true if
and only if all the following hold:

• 1970 ≤ Y ≤ 9999;
• 1 ≤ M ≤ 12;
• 1 ≤ D ≤ days of month Y M.

Use examples:

• valid date 2009-10-03 = true

• valid date 2016-12-32 = false

2.14 fun valid time

fun valid_time : time → date

Checks for the validity of a time in UTC. Given a time Y-M-D-h:m:s, valid or invalid, returns
true if and only if all the following hold:

• valid date Y-M-D = true;
• 0 ≤ h ≤ 23;
• 0 ≤ m ≤ 59;
• 0 ≤ s ≤ max second Y-M-D h m.

Use examples:

• valid time 2009-10-03-14:32:60 = false

• valid time 2016-12-31-23:59:60 = true

2.15 fun version date

fun version_date : date

Gives the date where the list of leap seconds was last updated. It has no arguments.

Use examples:

17

• version date = 2021-11-29

2.16 fun date of time

fun date_of_time : (t : time) → date

Projection of the date part of a time.

Use examples:

• date of time 2009-10-03-14:32:59 = 2009-10-3

• date of time 2016-12-31-23:59:60 = 2016-12-31

2.17 fun clock of time

fun clock_of_time : (t : time) → clock

Takes as input a time and returns the clock corresponding to that time.

Errors:

• InvalidTime if valid time t = false

Use examples:

• clock of time 2009-10-03-14:32:59 = 14:32:59

• clock of time 2016-12-31-23:59:60 = 23:59:60

2.18 fun second

fun second : (t : time) → int63

Projection of the second component of a time.

Use examples:

• second 2009-10-03-14:32:59 = 59

• second 2016-12-31-23:59:60 = 60

2.19 fun minute

fun minute : (t : time) → int63

Projection of the minute component of a time.

Use examples:

• minute 2009-10-03-14:32:59 = 32

• minute 2016-12-31-23:59:60 = 59

18

2.20 fun hour

fun hour : (t : time) → int63

Projection of the hour component of a time.

Use examples:

• hour 2009-10-03-14:32:59 = 14

• hour 2016-12-31-23:59:60 = 23

2.21 fun day

fun day : (d : date) → int63

Projection of the day component of a time.

Use examples:

• day 2009-10-03-14:32:59 = 3

• day 2016-12-31-23:59:60 = 31

2.22 fun month

fun month : (d : date) → int63

Projection of the month component of a date.

Use examples:

• month 2009-10-03-14:32:59 = 10

• month 2016-12-31-23:59:60 = 12

2.23 fun year

fun year : (d : date) → int63

Projection of the year component of a date.

Use examples:

• year 2009-10-03-14:32:59 = 2009

• year 2016-12-31-23:59:60 = 2016

2.24 fun weekday of date

fun weekday_of_date : (d : date) → weekday

Returns the day of the week of a date.

Errors:

19

• InvalidDate if valid date d = false

Use examples:

• weekday of date 2009-10-03 = Saturday

• weekdat of date 2016-12-30 = Friday

2.25 fun utc timestamp

fun utc_timestamp : (t : time) → int63

Conversion from time to its timestamp. Both types in UTC with leap seconds.

Errors:

• InvalidTime if valid time t = false

Use examples:

• utc timestamp 2009-10-03-14:32:25 = 1254580369

• utc timestamp 2016-12-31-23:59:60 = 1483228826

2.26 fun from utc timestamp

fun from_utc_timestamp : (n : int63) → time

Conversion from a timestamp to its time. Both types in UTC with leap seconds.

Errors:

• NumberOutOfBounds if not 0 ≤ n ≤ 253402300826

Use examples:

• from utc timestamp 1254580369 = 2009-10-3-14:32:25

• from utc timestamp 1483228826 = 2016-12-31-23:59:60

2.27 fun le date

fun le_date : (d1 : date) → (d2 : date) → bool

Given two dates d1 and d2, returns true if d1 is less than or equal to d2 and false otherwise.
In other words, ≤ for date.

Errors:

• InvalidDate if valid date d1 = false or valid date d2 = false

Use examples:

• le date 2009-10-3 2009-10-3 = true

• le date 2016-12-31 2009-10-3 = false

20

2.28 fun lt date

fun lt_date : (d1 : date) → (d2 : date) → bool

Given two dates d1 and d2, returns true if d1 is less than or equal to d2 and false otherwise.
In other words, < for date.

Errors:

• InvalidDate if valid date d1 = false or valid date d2 = false

Use examples:

• lt date 2008-8-7 2009-10-3 = true

• lt date 2016-12-31 2009-10-3 = false

2.29 fun le time

fun le_time : (t1 : time) → (t2 : time) → bool

Given two times t1 and t2, returns true if t1 is less than or equal to t2 and false otherwise.
In other words, ≤ for time.

Errors:

• InvalidTime if valid time t1 = false or valid time t2 = false

Use examples:

• le time 2009-10-3-14:32:25 2009-10-3-14:32:25 = true

• le time 2016-12-31-23:59:60 2009-10-3-14:32:25 = false

2.30 fun lt time

fun lt_time : (t1 : time) → (t2 : time) → bool

Given two times t1 and t2, returns true if t1 is less than or equal to t2 and false otherwise.
In other words, < for time.

Errors:

• InvalidTime if valid time t1 = false or valid time t2 = false

Use examples:

• lt time 2008-8-7-17:21:12 2009-10-3-14:32:25 = true

• lt time 2016-12-31-23:59:60 2009-10-3-14:32:25 = false

2.31 fun from formalTime

fun from_formalTime : (ft : formalTime) → int63

Returns the number of seconds in a formalTime.

21

Errors:

• InvalidFormalTime if the bounds 1-6 given in formalTime are not respected

Use examples:

• from formalTime 0-0-0-35-30-100 = 127900

• from formalTime 10-5-2-20-30-50 = 328566650

2.32 fun to formalTime

fun to_formalTime : int63 → formalTime

Converts a number of seconds in a formalTime.

Errors:

• NumberOutOfBounds if not n ≥ 92233720375632000 (365 · 86400 multiplied by the max-
imum value for the formal year component).

Use examples:

• to formalTime 127900 = 0-0-1-11-31-40

• to formalTime 328566650 = 10-5-2-20-30-50

2.33 fun add formal

fun add_formal : (t : time) → (dur : formalTime) → time

Computes the result of adding a certain duration dur expressed in formalTime to a given time
t.

Errors:

• InvalidTime if valid time t = false

• InvalidFormalTime if the bounds 1-6 given in formalTime are not respected
• Overflow if the result would be before 1970 or after 9999

Use examples:

• add formal 2009-10-03-14:32:25 0-0-0-35-30-100 = 2009-10-5-2:4:5

• add formal 2016-12-31-23:59:60 10-5-2-20-30-50 = 2027-5-31-20:30:49

2.34 fun subtract formal

fun subtract_formal : (t : time) → (dur : formalTime) → time

Computes the result of subtracting a certain duration dur expressed in formalTime to a given
time t.

Errors:

• InvalidTime if valid time t = false

• InvalidFormalTime if the bounds 1-6 given in formalTime are not respected

22

• Overflow if the result would be before 1970 or after 9999

Use examples:

• subtract formal 2009-10-03-14:32:25 0-0-0-35-30-100 = 2009-10-2-3:0:45

• subtract formal 2016-12-31-23:59:60 10-5-2-20-30-50 = 2006-8-4-3:29:13

2.35 fun shift utc seconds

fun shift_utc_seconds : (t : time) → (shift : int63) → time

Shifts the second component of the time t the number of times determined by the signed integer
shift, carrying if needed to the components to the left. For a more detailed description see
the section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

Use examples:

• shift utc seconds 2009-10-03-14:32:25 18320 = 2009-10-3-19:37:45

• shift utc seconds 2016-12-31-23:59:60 -567812 = 2016-12-25-10:16:28

2.36 fun add formal seconds

fun add_formal_seconds : (t : time) → (amount : int63) → time

Adds a signed amount of formal seconds to a time. For a more detailed description see the
section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

Use examples:

• add formal seconds 2009-10-03-14:32:25 18320 = 2009-10-3-19:37:45

• add formal seconds 2016-12-31-23:59:60 -567812 = 2016-12-25-10:16:28

2.37 fun shift utc minutes

fun shift_utc_minutes : (t : time) → (shift : int63) → time

Shifts the minute component of the time t the number of times determined by the signed
integer shift, carrying if needed to the components to the left. If the result is between 1970
and 9999 but would be an invalid time, the wrong component is corrected to the closest previous
valid second. For a more detailed description see the section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

23

• NumberOutOfBounds if the result would be before 1970 or after 9999

Use examples:

• shift utc minutes 2009-10-03-14:32:25 18320 = 2009-10-16-7:52:25

• shift utc minutes 2016-12-31-23:59:60 -567812 = 2015-12-3-16:27:59

2.38 fun add formal minutes

fun add_formal_minutes : (t : time) → (amount : int63) → time

Adds a signed amount of formal minutes to a time. For a more detailed description see the
section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if amount ≤ -76861433640456466 (minimum int63 divided by the
formal minute duration) or if amount > 76861433640456465 (maximum int63 divided by
the formal minute duration), or if the result would be before 1970 or after 9999

Use examples:

• add formal minutes 2009-10-03-14:32:25 18320 = 2009-10-16-7:52:25

• add formal minutes 2016-12-31-23:59:60 -567812 = 2015-12-3-16:28:0

2.39 fun shift utc hours

fun shift_utc_hours : (t : time) → (shift : int63) → time

Shifts the hour component of the time t the number of times determined by the signed integer
shift, carrying if needed to the components to the left. If the result is between 1970 and 9999
but would be an invalid time, the wrong component is corrected to the closest previous valid
second. For a more detailed description see the section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

Use examples:

• shift utc hours 2009-10-03-14:32:25 18320 = 2011-11-5-22:32:25

• shift utc hours 2016-12-31-23:59:60 -5678 = 2016-5-9-9:59:59

2.40 fun add formal hours

fun add_formal_hours : (t : time) → (amount : int63) → time

Adds a signed amount of formal hours to a time. For a more detailed description see the section
on time arithmetic.

Errors:

24

• InvalidTime if valid time t = false

• NumberOutOfBounds if amount ≤ -1281023894007608 (minimum int63 divided by the
formal hour duration) or if amount > 1281023894007607 (maximum int63 divided by
the formal hour duration), or if the result would be before 1970 or after 9999

Use examples:

• add formal hours 2009-10-03-14:32:25 18320 = 2011-11-5-22:32:25

• add formal hours 2016-12-31-23:59:60 -5678 = 2016-5-9-10:0:0

2.41 fun shift utc days

fun shift_utc_days : (t : time) → (shift : int63) → time

Shifts the day component of the time t the number of times determined by the signed integer
shift, carrying if needed to the components to the left. If the result is between 1970 and 9999
but would be an invalid time, the wrong component is corrected to the closest previous valid
second. For a more detailed description see the section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

Use examples:

• shift utc days 2009-10-03-14:32:25 10 = 2009-10-13-14:32:25

• shift utc days 2016-12-31-23:59:60 -5 = 2016-12-26-23:59:59

2.42 fun add formal days

fun add_formal_days : (t : time) → (amount : int63) → time

Adds a signed amount of formal days to a time. For a more detailed description see the section
on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if amount ≤ -53375995583651 (minimum int63 divided by the for-
mal day duration) or if amount > 53375995583650 (maximum int63 divided by the formal
day duration), or if the result would be before 1970 or after 9999

Use examples:

• add formal days 2009-10-03-14:32:25 10 = 2009-10-13-14:32:25

• add formal days 2016-12-31-23:59:60 -5 = 2016-12-27-00:00:00

2.43 fun shift utc months

fun shift_utc_months : (t : time) → (shift : int63) → time

25

Shifts the month component of the time t the number of times determined by the signed integer
shift, carrying if needed to the components to the left. If the result is between 1970 and 9999
but would be an invalid time, the wrong component is corrected to the closest previous valid
date (if the date is invalid), and after that, the second component is corrected to the previous
valid second (if the time is still invalid). For a more detailed description see the section on
time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

Use examples:

• shift utc months 2009-10-03-14:32:25 18320 = 3536-6-3-14:32:25

• shift utc months 2016-12-31-23:59:60 -560 = 1970-4-30-23:59:59

2.44 fun add formal months

fun add_formal_months : (t : time) → (amount : int63) → time

Adds a signed amount of formal months to a time. For a more detailed description see the
section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if amount ≤ -1779199852789 (minimum int63 divided by the formal
month duration) or if amount > 1779199852788 (maximum int63 divided by the formal
month duration) or if the result would be before 1970 or after 9999

Use examples:

• add formal months 2009-10-03-14:32:25 18320 = 3514-7-6-14:32:22

• add formal months 2016-12-31-23:59:60 -560 = 1971-1-3-0:0:26

2.45 fun shift utc years

fun shift_utc_years : (t : time) → (shift : int63) → time

Shifts the year component of the time t the number of times determined by the signed integer
shift. If the result is between 1970 and 9999 but would be an invalid time, the wrong compo-
nent is corrected to the closest previous valid date (if the date is invalid), and after that, the
second component is corrected to the previous valid second (if the time is still invalid). For a
more detailed description see the section on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

Use examples:

• shift utc years 2009-10-03-14:32:25 1832 = 3841-10-3-14:32:25

• shift utc years 2016-12-31-23:59:60 -45 = 1971-12-31-23:59:59

26

2.46 fun add formal years

fun add_formal_years : (t : time) → (amount : int63) → time

Adds a signed amount of formal years to a time. For a more detailed description see the section
on time arithmetic.

Errors:

• InvalidTime if valid time t = false

• NumberOutOfBounds if amount ≤ -146235604339 (minimum int63 divided by the formal
year duration) or if amount > 146235604338 (maximum int63 divided by the formal year
duration), or if the result would be before 1970 or after 9999

Use examples:

• add formal years 2009-10-03-14:32:25 1832 = 3840-7-16-14:32:22

• add formal years 2016-12-31-23:59:60 -45 = 1972-1-13-0:0:26

2.47 fun time difference

fun time_difference : (t1 : time) → (t2 : time) → formalTime

Given two times t1 and t2, computes the duration expressed in formalTime between them.

Errors:

• InvalidTime if valid time t1 = false or valid time t2 = false

• InvalidOrderOfTimes if lt time t1 t2 = false

Use examples:

• time difference 2016-12-31-23:59:60 2009-10-03-14:32:25 = 7-3-1-9-27-37

• time difference 3840-7-16-4:2:34 2009-10-03-14:32:25 = 1831-12-4-13-30-12

2.48 fun sec time difference

fun sec_time_difference : (t1 : time) → (t2 : time) → int63

Given two times t1 and t2, computes the duration expressed in seconds between them.

Errors:

• InvalidTime if valid time t1 = false or valid time t2 = false

• InvalidOrderOfTimes if lt time t1 t2 = false

Use examples:

• sec time difference 2016-12-31-23:59:60 2009-10-03-14:32:25 = 228648457

• sec time difference 3840-7-16-4:2:34 2009-10-03-14:32:25 = 57773914212

27

	Preface
	Context
	File structure
	About the wrapper code

	Compilation and installation
	Compilation
	Using the executable
	About esy

	Usage
	The UTC standard
	A new notion for consistent time arithmetic
	Shift functions
	Add-formal functions

	The Coq Time Library: Main features

	Definitions
	type int63
	type bool
	type weekday
	type date
	type time
	type clock
	type formalTime
	type coq_error
	type format_error
	fun is_leap_year
	fun days_of_month
	fun max_second
	fun valid_date
	fun valid_time
	fun version_date
	fun date_of_time
	fun clock_of_time
	fun second
	fun minute
	fun hour
	fun day
	fun month
	fun year
	fun weekday_of_date
	fun utc_timestamp
	fun from_utc_timestamp
	fun le_date
	fun lt_date
	fun le_time
	fun lt_time
	fun from_formalTime
	fun to_formalTime
	fun add_formal
	fun subtract_formal
	fun shift_utc_seconds
	fun add_formal_seconds
	fun shift_utc_minutes
	fun add_formal_minutes
	fun shift_utc_hours
	fun add_formal_hours
	fun shift_utc_days
	fun add_formal_days
	fun shift_utc_months
	fun add_formal_months
	fun shift_utc_years
	fun add_formal_years
	fun time_difference
	fun sec_time_difference

