
Industrial Software Homologation:
Theory and case study

Analysis of the European tachograph technology with EU transport
Regulations 3821/85, 799/2016, and 561/06 and their consequences

for Europeans citizens

Guillermo Errezil Alberdi Formal
Vindications S.L.

in collaboration with:1

Joost J. Joosten
Universitat de Barcelona

Gina García Tarrach
Universitat de Barcelona

Aleix Solé Sánchez
Universitat de Barcelona

Ana de Almeida Borges
Universitat de Barcelona

Eric Sancho
Universitat de Barcelona

David Fernández-Duque
Ghent University

July 1, 2024

1Project funded by the Spanish Ministry of Science, Innovation and Universities, the State Agency
for Research and the European Regional Development Fund (ERDF).

Contents

1 Introduction: dangerous software 3
1.1 Software contains errors . 3
1.2 Towards software homologation: zero error software 5
1.3 Illogical software specifications . 7
1.4 Computer says: Jail . 8
1.5 Tachographs: this document . 9
1.6 Serious business . 12

2 In which circumstances do we deem software that is not following the law
illegal? An introductory case. 15
2.1 Driver Card . 15
2.2 Tachograph . 18

3 Fine of 1 650€ for driving 12h53min in Spain, just reading the printed ticket
as proof 20

4 Cut theory broken by authorities 33

5 Driving for 36h and 12 minutes in Germany: 6 555€ fine and 10 000€ bail 38

6 Diving with card not inserted for 0h00min: a 600£ fine 51

7 25 000DKK fine and driving license suspended in Denmark 60
7.1 Information stored in TREP02 but not in TREP03 60
7.2 Event stored in TREP03 but not in TREP02 . 61
7.3 Information stored in TREP02 and TREP03 but with different durations 61

8 355 000DKK fine and jail time in Denmark 70

9 The problem of having two different activities during the same minute. Fine
of 4 600€ for driving 28h10min. 97

10 The unbelievable “card not inserted” event in driver cards. 106

11 Over speeding in TREP03 in less than 60 seconds, the simplest and easiest
case of verification 109

12 Big divergences between TREP03 and TREP04 in Over speeding 111

13 Activity time discrepancies between slot1 and slot2 121

14 The definition of driving time: specific software analysis through different
versions 122

15 The Unix vs. UTC problem 129

16 Physically impossible values: a fine of 7.500 Euro 135

17 The time zone problem 148

1

18 Notes about problems concerning Regulation 561/06 150

19 French Black March 153

20 Spanish fine for weekly rest period 172

21 Belgium Fine for weekly rest 184

22 Driver definition: What is a driver digitally? 208

23 No legal defence in France 210

24 Perspectives 212

25 Appendix: A selection of European fines in which human intervention was
214

219

2

needed to correct decisions produced b software

26 Addendum: Incompatibility of tachograph file interpretation using UTC and Unix time

Glossary 223

1 Introduction: dangerous software

EXECUTIVE SUMMARY
Industrial software always contains mistakes and errors. This can lead to disastrous con-
sequences, huge losses and casualties. Worldwide there is no standard way to homologate
software. Europe can become leader in this field and in this introduction we put forward
a revolutionary proposal. We see how not applying our proposal leads to unworkable
situations in the best and disasters in the worst case scenarios.
Next, we focus on a case study: the tachograph. The tachograph is a device to measure
driving activities for road transportation. European regulations stipulate in a detailed
fashion how tachographs should behave. In the remainder of this document it is shown
how tachographs exhibit many of the aforementioned problems.

1.1 Software contains errors

Industrial software always contains mistakes and errors. Most of the times, these errors go by
unnoticed. But sometimes the outcome is disastrous. A classical example is the explosion of
the Ariane 5 launcher in 1996 due to a software error. Media reports indicated that the amount
lost was half a billion dollars – uninsured. This is a costly software error.

Figure 1.1: On June 4, 1996, the maiden flight of the European Ariane 5 launcher crashed
about 40 seconds after takeoff.

The list of severe incidents due to software errors is long and very worrying including casualties,
severe damage and civil right violations. In subsection 1.6 we include some further examples.

Various professions which come with serious responsibility –like medical doctor or lawyer– are
severely regulated and controlled by the state authorities. However, anybody can call him or

3

herself a programmer.

Notwithstanding this, regulators are trying to impose some quality control on critical soft-
ware. Thus, there are standards around on how to develop software. They consist of lengthy
documents that listen to poetic names like DO-178B (ED-12B), DO-178C or DO-333.

These current standards, however, are mainly based on imposing many sanity checks in the
programming process on the one hand, and on what is called dynamic testing on the other hand:
test your program on many samples for which you know how your program should behave and
compare this to how the program actually does behave. By abiding to these standards, the
amount of average errors goes significantly down as we can see in the following table.

Figure 1.2: This table shows the average amount of errors per Kloc, that is per thousand (Kilo)
lines of code.

As we see in the table above, skilled (agile) programmers with a university background typically
make around 22 errors per thousand lines of code. Applying all the involved current state-of-
the-art standards to programming we see that there are relatively very few errors in the code,
about one error per ten thousand lines of code. But, how do we know this error is not fatal? A
typical medium-sized industrial program module can be in the order of a million lines of code.
This leaves us with around a hundred errors.

The important message to learn is:

With the state-of-the-art quality standards for software development there will always
remain some errors in the code.

The question begs itself:

Is there really no way to obtain zero errors? Here we mean really zero, not zero comma
something. No, a round zero, NO ERRORS AT ALL.
In the next section we see how, in a certain sense, this can indeed be accomplished.

As we said, in the next section we see how, in a certain sense, this can indeed be accomplished.
The techniques that we will expose are powerful enough to guarantee zero errors. Since the

4

technique is young and much under development Europe still has a chance to fully invest in it
and become the undisputed world leader in what we call software verification.

1.2 Towards software homologation: zero error software

The main question is:

how can we be a hundred percent sure that our software does not contain errors?

In this section we present a new technique where all errors of a certain kind will be eliminated
with hundred percent certainty. This is a revolutionary and abysmal change with respect to
conventional programming.

Before giving out our answer, we would like to encourage the reader to reflect on a basic
question: how and when can we be hundred percent sure of some knowledge? Is it possible to
know something for sure? And if so, in what situations can we have hundred percent certainty
that what we state is really true?

Remember, we want to know that some software always does what it should do, for any of the
infinitely many possible inputs. So, we cannot check them all one by one. Pray, how can we
be hundred percent sure that our software is correct? Please do ponder on this question before
looking at our solution.

5

Homologation through Formal Verification

It may be clear that testing a software can never guarantee that the software always works well:
there are simply too many possible different inputs and they cannot all be tested for.

Our standpoint is: only mathematical proof can provide full certainty. In par-
ticular, only mathematical proof can provide full certainty that a program always does
what it should do.

In the past decades very deep mathematical theory and machinery has been developed to
do what is needed to truly homologate software: to mathematically prove correctness of the
program. This process is called Formal Verification.

Thus, Formal Verification of software provides us with a mathematical proof (∆) that the
technical specifications (Σ) are followed exactly by the implemented code (Π). It implies that
the resulting software is bug-free.

FORMALLY VERIFIED SOFTWARE consists of three components.
First, there is a Technical Specification (Σ) in a precise formal mathematical language
that tells with mathematical precision and rigor what the software should do. It is
completely unambiguous in the strict mathematical sense.
Second, there is a software (Π) that executes according to the specification.
The third and key ingredient to formally verified software is a mathematical
PROOF/DEMONSTRATION (∆) that the software (Π) does exactly what the spec-
ification (Σ) says it should do.
Thus, Formal Verification delivers a triple (∆, Σ, Π). The proof (∆) replaces and
outperforms Dynamic Testing and is the only reasonable base for Real Homologation.
This proof (∆) guarantees that:
(i) ZERO bugs will appear in the resulting code and also
(ii) that the given specification is exactly reproduced by the code.

When we have a triple (∆, Σ, Π) as above, we call Π a HOMOLOGATED SOFTWARE.

An additional strength of this process is that one uses computers to check that the proof
is indeed a proof and does not contain any error. Given that this single checking program is
correct, we can truly assert that all programs developed using formal verificationHAVE ZERO
ERRORS. In particular, the program will exactly follow the specification and programs will be
as good as their specifications are. It is thus of utmost importance to have good specifications.

In particular, the specification itself must fulfil the following requirements for decent design:

6

DECENT DESIGN REQUIREMENTS
• Type1 in Decent Design: A specification must follow the following logical-

mathematical principles and in particular should be consistent: no contra-
dictions are entailed. A desirable additional property is completeness: the system
will decide all situations

• Type2 in Decent Design: It must respect computational limits (not exceeding
available computation time and memory).

• Type3 in Decent Design: It must follow physical laws.

As we shall see, many of the decent design requirements are often violated.

1.3 Illogical software specifications

Consider the following rule concerning a 20th century regulation for railway in Kansas:

“When two trains approach each other at a crossing, both shall come to a full
stop and neither shall start up again until the other has gone.”

Figure 1.3: Railway crossings naturally give rise to critical situations. Here software better not
fail. As a matter of fact, the railway industry is one of the first to apply methods of formal
verification.

Clearly this regulation violates Type 1 requirements on decent design. If Kansas policy makers
hired a software company to develop this law in a digital-automatic environment, the company
would find the deadlock and should try to implement one of the following decisions:

1. Follow the law and have the trains stop forever.

7

2. Self-fix: For example by giving preference to a train on one side.

Consider: This solution would mean that the software would be breaking the law. More-
over, the software engineers would be legislating at their will (consciously or otherwise).

3. Engage with the policy makers to amend the law, assuming that they understand
basic mathematical properties. In this particular case, they should be able to grasp the
inconsistency of the law with simple requirements on operability.

We will extrapolate and carry this case over to a more complex technology in order and show
under close analysis that this undesirable situation is being experienced today within European
Union regulations.

1.4 Computer says: Jail

Imagine the following situation. You walk on the street, and a police officer stops you. She
asks to see your ID card and passes it by a scanner upon which she says:

“I am very sorry but I have to imprison you immediately since your perbonculation
number is way over 23."

Apparently, the scanner looked at the ID card, performed some computations and concluded a
severe infraction: a perbonculation number that is substantially bigger than 23.

Any citizen would respond by asking:

“But, what are you talking about? What is my perbonculation number? How the
heck is that defined? How could your scanner compute it?"

In this situation the absurdity is clear: there is no such thing as a perbonculation number, it
is nowhere defined and it is thus clear that the scanner outputted an arbitrary number and
there are no grounds to go to jail. However, something quite similar happens in European road
transportation every day as we shall see.

We could see the absurdity of the above situation since it is evident that perbonculation is
undefined. However, things get more dangerous when we replace the word “perbonculation”
with some other word that appeals to intuitions and vague ideas from common knowledge so
that it seems that it is defined but actually it is not. We see this in our next example.

In this next example, there is no need to use our imagination since it happens on a daily basis
within the European Union.

A police officer stops a truck-driver and passes a scanner by the tachograph (a sort of black
box of a truck that registers all sorts of activities) of the truck. Upon looking on her scanner
she says:

8

“I am very sorry but I have to imprison you immediately since your daily driving
time is over twelve hours."

The venom is in the fact that daily driving time appeals to intuitions stored in our common
knowledge: we have an idea what a day is and what driving is. However, it turns out that
daily driving time is NOWHERE FORMALLY DEFINED. So, how then can a scanner
compute it?

We shall see in the remainder of this document that this problem is dangerous and very impor-
tant. We can mathematically prove (see Section 3) that one and the same driver file can give
different outcomes depending on the definition of daily driving time. In particular, we shall
see an example where one definition of daily driving time will tell you that you have been rest-
ing for the past twelve hours while another definition will tell you that you have been driving
straight for the past twelve hours. Both definitions of daily driving time are very natural and
acceptable.

We have a big problem indeed!

One may argue that this is a FORMALLY VERIFIED SOFTWARE condition 3 violation. But
actually, using the technique of formal verification disallows vaguely or non defined concepts.
This is due to the fact that the specification language only allows for full and mathematically
precise and unambiguous definitions.

1.5 Tachographs: this document

In the remaining sections of this document we will study the tachograph for European road
transportation. The vehicle files that store and interpret the driver and vehicle activities are
generated by a completely automated process. The software that generates the tachograph files
is proprietary whence the source code cannot be read. Thus,NOBODY CAN CHECK THE
CORRECTNESS OF THE TACHOGRAPH TECHNIQUE AND SOFTWARE.
However, tachographs are of critical importance in European law enforcement:

On the basis of the tachograph files alone, police officers take important actions, like
• Penalisation with fines (which entails millions in losses for particular truck drivers

and companies);
• Withdrawal of drivers’ licenses;
• Incarceration.

So, tachographs are decisive in important legal decision taking. It is like the above: “Computer
says: jail”. Now, it is known that tachographs make mistakes from time to time. Figure 1.4
below nicely illustrates how police offices do accept both the decisiveness of tachograph data
on the one hand and the fallibility of tachograph data on the other hand.

9

Figure 1.4: Note from Austrian Police where they admit that the tachograph output data
represent the basis of any accusation. Moreover, they admit extreme situations in which the
output data has to be inspected by drawing upon manual records, that means, basically, that
this output is not trusted even by the agents of the law. Actually, Police officers around Europe
have to deal with the responsibility of believing those dubious proofs.

The point we wish to make in this document is that it is unacceptable that non-homologated
software is sending people to jail. Even more so since we know for sure that this software is
making many mistakes.

A similar situation occurs with software that performs DNA sequencing. On the basis of
this software people are sent to jail or even sentenced to death. In three cases, judges from
USA and Australia have petitioned to make the software open to the public from proprietary
DNA comparing software, due to some unreliable results1: STRmix (granted), FST (granted),
TrueAllele (still proprietary).

1The court references are respectively: DPP v Tuite (Ruling No 3) , Supreme court of Victoria, at Melbourne,
Australia; United States of America v Kevin Johnson, United States District Court Southern District of New
York, at New York City. 15 Cr. 565 (VEC); Case No. F071640 IN THE COURT OF APPEAL OF THE
STATE OF CALIFORNIA - FIFTH APPELLATE DISTRICT The People of the State of California, Plaintiff
and Appellee, v. Billy Ray Johnson, Defendant and Appellant.

10

Society is becoming every day more aware that the ‘Computer says: jail’ scenario is
simply unacceptable.

Also in Spain, this awareness is making it to the court-rooms. In Figure 1.5 below, we ex-
pose the example of a recent sentence from a Spanish court: N. Sentence: 30/2019, CON-
TENCIOSO/ADMTVO court. N. 4 of Valladolid (Spain) in which the court dismisses any
legal action against the defendant for the fact that the software in charge of data
extraction has no homologation and is not verified.

Figure 1.5: N. Sentence: 30/2019, CONTENCIOSO/ADMTVO court. N. 4 of Valladolid
(Spain). The two present paragraphs argue that the tachograph has internal mistakes, therefore,
the output data can not be trusted. It puts special attention for the lack of homologation (of
both tachograph and the software used by the authorities) and acquits the defendant of the
entire accusation. This case will be analyzed in Section 20.

We think it is really unavoidable and necessary that sooner or later some form of manda-
tory software homologation will come in force. In this document we shall focus on European
legislation for road transportation. In particular we shall perform analyses of parts of Regula-
tions 3821/85 and 799/2016 and amendments thereof. As we shall see, both the law and the
implementations contain various short-comings.

11

1. The technical specifications for tachograph in Reg. (3821/85 and 799/2016) are
poorly defined and have inner deficiencies.

2. The software in charge of extracting and computing tachograph data, despite being
regulated, is not verified or under any measure of control. This means that the
data from which police officers and judges decide to punish drivers and companies,
is potentially false.

3. The transport regulation 561/06 is totally disconnected from the logic of digital
processes that have to compute it. Moreover, it shows a severe lack of consistency:
It has been mathematically proven that 561/06 bears internal contradictionsa. This
makes it virtually impossible to convert the law into a computable system, therefore,
this means that the regulation is not actually followed by the resulting software and
the law is eventually written by the engineers.

4. In 3821/85 and 561/06 we can even find different possible interpretations (of the
same rule) among languages due to wrong translations. Also, there are profound
and undetected technical discrepancies in time measuring (UNIX / UTC) that can
lead to distinct data evaluation results.

aB. JESPERSEN et al. When logic lays down the law, https://arxiv.org/abs/1810.03002,
Barcelona 2018. Also, DEL CASTILLO TIERZ, J. When the laws of logic meet the logic of laws,
http://diposit.ub.edu/dspace/handle/2445/133778. Master’s thesis, Universitat de Barcelona,
Barcelona, 2018.

Engineers are, accidentally, the real lawmakers; Bugs, arbitrariness and wrong data
are, in turn, a legal part of the accusation. Is that acceptable?

The case we are going to develop in this document is an example of a broad problematic
that concerns our societies security and our citizens legal certainty. In particular, in this
document we are going to show:

• The unjust legal consequences produced by deficient (unsafe) technology
which is responsible for applying a regulation that, in turn, is not adapted to
technical complexity.

• A comprehensive, step by step explanation of the technical problems, adding ev-
idence from real cases processed by Police Controller® from a european legal services
provider's database, containing 1.282.687 driver files and 467.296 vehicles files.

• An integral proposal, based on Formal Verification of Software, to solve a criti-
cal situation concerning not only software-based legal proof systems, but also all
kind of software-based systems that directly affect our society’s security. This
proposal advocates a new and unavoidable paradigm: Software homolo-
gation through Formal Verification.

1.6 Serious business

In this remaining subsection of the introduction we show some more examples where software
errors had disastrous consequences. The impatient reader can skip this subsection and only

12

https://arxiv.org/abs/1810.03002
http://diposit.ub.edu/dspace/handle/2445/133778

come back to it when referenced to.

Millions in loses: Schiaparelli case.

In October 2016, Europe’s Mars Schiaparelli lander crashed in the surface of Mars due to a
software glitch. The Inertial Measurement Unit detected a “larger than expected” angular pitch
rate, which triggered a “saturation” alert. The software was programmed in such a way that it
could not accept all potentially possible physical data. This caused a delusion to the
parachute activation device before time, causing at last the destruction of the space probe and
the loss of millions of Euros invested by ESA.

Non-formally verified software, poorly defined specifications, all types of bugs and lack of con-
sistency in data processes are actually causing damage and millions in loses. Take into account
examples of big failed projects such as Europe’s Mars Schiaparelli crash (2016); disasters in
Arianne launch programs (destruction of Arianne 5 (1996) and rockets coming out of their or-
bit (2018); disastrous financial algorithms like Knight Capital’s Power Peg (2012); and a large
etcetera that includes all kinds of software. All these cases are examples of avoidable tragedies
caused by internal software malfunctions and wrong verification (see Section 12 as an example
of this kind of irregularities).

Boeing 737 Max-8:

A more tragic example of improper verification on different levels are the air plane crashes of
Boeing Model 737 Max-8 series in Indonesia and Adis Abeba.

The Boeing 737 Max-8 is an airplane developed on the Boeing 737 NGT basis, which is currently
still working for airlines all around the world. Due the size of the new turbines, these had to
be set up in front of the wings. This lead to a different behavior of the air plane movements,
especially when climbing. Boeing 737 8-Max has a higher probability of stalling, which happens
when there is a wrong reaction of the pilots in front of a possible crash.

To support the pilots flying the airplane, a software called “MCAS” was implemented into the
Boeing 737 Max-8. In case the software detects that the air plane is close to stalling, “MCAS”
automatically lowers the front part of the air plane to prevent it from stalling.

One major problem of the “MCAS”-system was that the software only used the information of
one single sensor in order to take the decision of whether the air plane was close to stalling,
thus to start the automatised reaction on this.

A second problem was that the pilots who are always supposed to be able to outvote the
software of an airplane, were not able to do so. The pilots were trying to pull-up the nose, but
the software “MCAS” was pulling the nose down again. It even blocked the pilots commands.
After the crash in Indonesia, Boeing advised the pilots to use the manual trimming of the
airplane to change the flight status into nose-up again and to restart the “MCAS” computer.
Although the pilots of the flight that crashed nearby Adis Abeba followed this emergency
procedure, the air plane crashed. It seems already verified that it was impossible for the pilots
to gain back the complete control of the airplane and to restart the system.

Why is this a good example of improper verification? Airborne industry is one of the branches
frequently monitored and checked world wide. Also, the final product of industries like Boeing,
needs to undergo a large amount of tests to receive the permit to fly.

Included among this large amount of tests, there are, evidently, also software tests. With
nowadays information, we know that those tests were not properly followed. (E.g., at least 2
information sources for critical flight systems, overruling of the system by the pilot etc.)

13

Shuttle and airborne industry are precisely the industrial sectors that invest the most for
the security of their software by exhaustively applying all kind of dynamic testing techniques
to verify its reliability (take as an example DO-178-B / ED-12B) and, despite all efforts,
every year we end up with examples of internal malfunctions that lead to economical or even
human catastrophes. We will see that the nature of those problems is also found in tachograph
technology, where the result is not a visible crash of a rocket or a plane but the execution of
court cases based on unverified and often times wrong data. Should we consider that this
represents something to worry about?

14

2 In which circumstances do we deem software that is
not following the law illegal? An introductory case.

EXECUTIVE SUMMARY
This first case will show a simple example that, despite not having legal consequences,
signals a dangerous problem: sometimes legal software does not compute what has been
established by the law.

2.1 Driver Card

The first case we present appears to be simple and irrelevant at first sight, but a closer look
will help us illustrate that in some cases the software implementation of the tachograph and
the driver card (the personal card that records each driver’s activity) does not follow what the
regulations state, which means that the software is breaking the law.

What does the law state?

Regulations 3821/85 and 799/2016 state that the card holder’s preferred language shall appear
as two lower-case letters:

2.64. Language (2.88, 799/2016)
Code identifying a language.
L a n g u a g e : : = I A 5 S t r i n g (S I Z E (2))
Value assignment: Two-letter lower-case coding according to ISO 639.

How does the actual data behave?

Although the law is very clear on how this variable must be stored, we have come across driver
cards that do not respect this format: in particular, driver cards from Latvia, Slovakia and
Russia. In these cases, the two-letter code indicating the card holder’s preferred language is in
upper-case letters, instead of lower-case ones (Figure 2.1).

15

Figure 2.1: Module EF_Identification of three different driver cards. The different instances
of the variable cardHolderPreferredLanguage are upper-case in the first two cases (SK, LV)
and lower-case in the latter (it).

The database used to elaborate this document contained:

• 1415 driver files from Latvia,

• 1677 driver files from Russia, and

• 2084 driver files from Slovakia.

All of them showed the same irregularity. In the case of Russia however, the problem seems to
be solved already and new driver cards store the cardHolderPreferredLanguage information
in lower-case letters, as the law stipulates.

At first stage, Police Controller® engineers took the decision of not processing these kind of
files (as long as they do not comply with the law), so in a police control, they would appear as
“not processed files”. Taking into account that police officers need to do their job en route, and
the only way to do it is by taking wrong/illegal data as valid input, Police Controller® software
(as well as all software dealing with this data) had to take the path of solution 2 expressed in
the Kansas Railway problem: Violate the law and process the files.

Causes of the problem - INTEROPERABILITY TEST

First we must talk about the interoperability test. The interoperability test is performed to
new driver cards (in an independent laboratory) to both ensure correct communication between
these and the tachographs, and check that they are written in the correct format and contain
all the necessary nodes and information.

The test supposedly performs an analysis of all the Elementary Files2, one of which is EF_
Identification, which in turn contains the Card Holder Identification node, where the card
holder preferred language is stored. However, it still considers driver cards from Latvia and
Slovakia valid, in spite of them not strictly following the specification.

Authorities and developers only provide one way to verify that the software works according to
Regulation 3821/85: the interoperability test. This is dramatic, because this test allows invalid
driver cards and tachograph data, as we proved above! If the interoperability test makes

2Article 8.2. Digital Tachograph, Equipment Type Approval Interoperability Test Specification Version 2.3

16

these kinds of mistakes, it is impossible to ensure the safety of this technology.
Should then, the interoperability test also be tested?

The problem we are facing can be cause by the following:

• The software for the driver card does not follow the regulation in the specified instances
of the problem.

• The interoperability test is wrong.

• The lack of homologation protocols means that this failure is not detected by any mech-
anism.

Some questions arise here, to be answered by TACHOneta:
• Are the driver cards described above legal or illegal?
• Should software producers be fined for not following the technical specifications?
• Must the tachograph accept data that does not follow the specifications laid out in

the regulations? Should the software developers for police authorities accept them
as valid when the reading is done?

• How can we trust the Interoperability test if it is incapable of detecting a malfunc-
tion like the present one? How can we rely on the software?

aFor the proper implementation of the regulations concerning the tachograph, it is essential that
every driver holds only one valid driver card. Therefore, Member States must ensure the uniqueness
of the driver card they issue by sharing information with the other Member States. The TACHOnet is
a telematic network in operation across the EU that allows automated sharing of information between
Member States.

Legal consequences

This case is not negligible from a technical point of view. Despite the fact that storing
a variable in the wrong format may have no direct or penal consequences, it is nonetheless a vi-
olation of the regulation. Why do tachographs accept these cards, and why do they successfully
pass the interoperability test?

This situation allows us to ask the following questions: can we overlook the technical specifica-
tions about the format of the Language variable given by the law? If so, what other articles or
aspects of the law can be regarded ‘of little importance’ and hence disregarded as well? Where
do we draw the line of what must be strictly followed and what is flexible? If we can’t overlook
that, then why do the interoperability tests and the tachographs regard these cards as valid?
The validation mechanism must be failing.

17

What does software not following the technical specifications imply? Under-
standing the answer to this question is basic:

1. When software does not follow a technical specification, it is not fulfilling its desired
purpose: it does not work as it was intended to.

2. If software based on a regulation does not follow the technical specification, it is
breaking the law.

3. Therefore, either we don’t accept cards, devices and software that do not follow the
regulations, or we have to write another regulation in order to specify what parts
of the current regulations we can ignore.

What can not be sustained, from a technical and legal point of view, is the current state
of affairs.

2.2 Tachograph

Consider now Figure 2.2, where some vehicle card data from a Stoneridge tachograph is pre-
sented. Note that the value for monthYear is clearly erroneous. This must be a software
mistake.

Figure 2.2: Vehicle card data from the node TREP05_Technical_Data, showing an obvious
technical mistake with the value monthYear. This wrong configuration passes unnoticed by
software and tests despite its physical impossibility.

The question remains the same: how is it possible that basic data like monthYear can be wrong
and still pass all kind of controls? Where is limit of acceptable inconsistency?

18

Conclusion

In both cases presented above, Police Controller® rejected the driver card and was incapable
of processing the tachograph data. In order for it to read the files, it was necessary to stretch
the limits of admissibility to unacceptable points, breaking the technical specifications stated
in the regulation.

We conclude that there is no strict enough control of the data or of the
programs that read it. Is this acceptable? How can we use such dubious data
as legal evidence?

19

3 Fine of 1 650€ for driving 12h53min in Spain, just
reading the printed ticket as proof

EXECUTIVE SUMMARY In the present section we will show the case of a driver
who received a severe monetary fine for having exceeded the permitted daily driving
period. The fine was issued on the basis of the printed tachograph ticket. The fine was
rebutted in court and the case was won.

A main error is that the law does not tell us how to compute the central notion of driving
time in an interval. The notion seems intuitively clear but there are various essentially
different possibilities. Furthermore, we introduce a rudimentary version of so-called Cut
Theory according to which the law should stipulate how to deal with erroneous or absent
data.

We want this document to be as self-contained as possible. To this end, we include a full copy
of the fine and the sentence at the end of this section. For now, to remind us that we are talking
serious business, here we include an excerpt of the fine.

Figure 3.1: Excerpt of a fine for a daily driving period of 12h53min.

Police officers often rely on the printed ticket of the tachograph as evidence of illegal behavior.
However, these tickets are neither always correct nor complete as we shall reveal below.

20

Figure 3.2: Printed ticket attached with the fine. As can be seen, it indicates a daily driving
period of 12h 53min.

Figure 3.3: Data from EF Driver_Activity_Data.

The same information appears on the back of the printed ticket from the tachograph:

21

Figure 3.4: Data appearing in the printed ticket.

If we examine the EF_Driver_Activity_Data module from the driver card to contrast this
information, we observe the following:

On 12/Jan/2011, there are driving activities on the following intervals:

[05 : 39, 10 : 40] → Duration: 5h1min
[10 : 45, 10 : 47] → Duration: 0h2min
[10 : 51, 10 : 52] → Duration: 0h1min
[11 : 37, 12 : 02] → Duration: 0h25min
[12 : 05, 12 : 28] → Duration: 0h23min
[12 : 40, 13 : 00] → Duration: 0h20min
[13 : 06, 15 : 57] → Duration: 2h51min
[16 : 43, 20 : 28] → Duration: 3h45min
[20 : 30, 20 : 35] → Duration: 0h5min

If we add up the whole duration, we obtain a total driving time of 12h53min, as the printed
ticket stated. Did we compute the driving time correctly? Let us ask ourselves even a more
basic question:

22

WHAT IS DRIVING TIME duration in an interval?
Close investigation of the legal texts reveals that there is no definition of driving time
duration in an interval in 3821/85 or in 799/2016. How can that be possible? Driving
time is the central notion of the tachograph business. How has the tachograph calcu-
lated the daily driving time without a proper definition? Times and intervals given as
consecutive minutes have been added up. This seems intuitive but other options are
possible, like adding up times and intervals with precision at the level of seconds. The
legal consequences of using different options will be different as we shall see.

It is curious and ironic to see how the law is very precise on the format in which the total
driving duration should be given:

Figure 3.5: Article 11.5 of Appendix 4 from 3821/85.

But, how is the total driving duration computed? Where is it specified? Not in 3821/85, neither
in 561/2016. The answer is total driving duration is NOWHERE DEFINED. Then, how
did the tachograph calculate the total driving time duration from a driver file?

AGAIN: WHAT IS DRIVING TIME duration in an interval?
We must conclude that driving time duration in an interval is NOWHERE precisely
defined. It rather appeals to some intuition but there are various possible ways to compute
it. Yet programmers have to compute driving time duration in an interval in all kinds of
legal software. Can the output of such programs then be used as legal evidence?

At this moment, this seems to be a problem of FORMALLY VERIFIED SOFTWARE condition
3, that is to say, the software Π of the tachograph has definition for driving time duration that
does not exist in technical specification Σ.

We have to take into account that a tachograph is not a device to put a seal on a log-file of
undisputed physical measurements, it is a device used to calculate drivers’ driving time.

Let us look a bit closer into the details of the tachograph data. It then turns out that there
has been a power supply interruption as the next piece of evidence shows in Figure 3.6.

23

Figure 3.6: Data from EF Events_Data. There was a Power supply interruption event on the
day of the fine that took place while the longest driving period was happening (between 05:39
and 10:40) and this is properly recorded in the driver card.

CONCLUSION:
With this new information, can we say that driving time has a duration of
12h53min? The tachograph was out of power from 05:58:01 until 10:40:37 on
12/Jan/2011. Therefore, every change of activity occurring between those
times was not recorded. The driver could have stopped driving at some point
during that interval and there would be no record of it. In fact, we know
the that the vehicle was in a workshop in Zaragoza on that date and the first
driving activity was from the parking to inside the premises. With all this
taken into account, there is no reliable way of guaranteeing that the driver
was actually driving from 05:39 to 10:40 and hence the fine should not be
imposed.

More on driving time duration within an interval: another case In the above case
we have seen that driving time duration within an interval is a delicate issue:

• nowhere is it specified how to compute it (e.g. using the labels of the seconds, using the
labels of the minutes, or otherwise);

• it is not specified how wrong or missing data (like a power supply interruption) is to affect
driving time.

However, the question of driving time duration within an interval is much more complex than
just these two issues. In another file of another driver at another date, we observe the following:

_activityChangeInfo® (36) -> 16:54, WORKº, INSERTEDº, SINGLEº, DRIVERº
_activityChangeInfo® (37) -> 17:01, DRIVINGº, INSERTEDº, SINGLEº, DRIVERº
_activityChangeInfo® (38) -> 17:11, BREAK/RESTº, NOT INSERTEDº, SIN-
GLEº, DRIVERº

According to the driver activity data, the driving time lasts 10 minutes (from 17:01 until 17:11).
However, if we look at the vehicle record, we see that in fact, the card was removed at 17:11:34.

vehicleRecord® (146) -> 20/06/2008 01:40:33 - 20/06/2008 17:11:34, 5175FXK, KM: 80238 -
81032

According to this, then, the driving time lasts 10 minutes and 34 seconds. This inconsistency is
due to the lack of a proper definition of the driving time. To mitigate this, Police Controller®

24

allows users to select their preferred definition of driving time, since there is none
in the law:

Police Controller® is offering 4 different driving duration definition to be used in all the calcu-
lation.

Figure 3.7: Screenshot from Police Controller®.

CUT THEORY

In this section we will give the rudimentary beginnings of what we callCut theory. This theory
recognizes that the 4 possible activities of the driver (DRIVING, BREAK/REST, WORK and
AVAILABLE) are incompatible with the input of 3821/85 since for example, and as we have
seen, we may have unknown data at certain moments of time. Recall that something similar
happened with the Schiaparelli satellite: it crashed on its landing on Mars on 2016 since the
program did not know what to do with the input data, as there were no specifications for the
observed values.

To solve this problem, we can create a new driver activity called NO DATA. This activity will
be assigned to periods where no information is recorded, for instance, during a power supply
interruption event. It is the proper way to solve a problem that had its origin in the technical
specifications but it implies that the software engineers are acting as the law makers. Another
option is to automatically assign these periods of NO DATA to REST, to avoid unjust fines
such as the one presented.

Thus, similar to self-fix decisions in the Kansas Railway Law that we saw in the introduction of
this document, we propose to add the new activity type NO DATA. Observe that our proposed
fix

1. is not legal, but

2. avoids the violation of citizens legal certainty by giving real specifications.

The NO DATA activity is not only appearing in the “switch off-on” situations: there is a more
complex theory and we will try to explain it in examples that occur later in this document.

If we set the periods of NO DATA to REST in Police Controller® we still get a problem, since
the problematic period is detected as DRIVING again:

25

Figure 3.8: Screenshot from Police Controller®. The driving periods are colored red.

In the Screenshot we can see that there is DRIVING between switch OFF and ON in the Police
Controller®, even when we have NO DATA configured as REST, what is wrong here?

Amazingly we have a second mistake in the technology. Let us see what happened. We have
the following activity recorded in the tachograph:

And this is the time when it was switched on:

Then, even the fact that this WORK activity is physically impossible, it is recorded.

What has to be done with this activity? Delete it? Police Controller® decided to stop being
the lawmaker at this point.

There is activity when the tachograph is switched off:
This problem concerns the different time resolutions that the tachograph uses:
activities are stored in minutes and events in seconds (which is consistent with
Reg. 3821/85 but absolutely inconsistent from a mathematical point of view).
Here we can see some inconsistent data that is derived from this implementation. We
see that the power supply interruption event ended at 10:40:37, but there is a change of
activity (from driving to work) before, at 10:40. How has the tachograph recorded
something while it was out of power? This breaks condition of Type3 in
Decent Design.

What is behind these problems?

1. No definition of driving time duration: These are problems of FORMALLY VERIFIED
SOFTWARE condition 3.

2. Activities and information coming from 561/2016 and 3821/85 are not compatible (like
the case of Schiaparelli): These are problems of Type1 in Decent Design.

3. All the nodes are strictly in seconds except for the driving time in the Driver Activity
node, which is in minutes. These are problems of Type1 in Decent Design.

4. We obtain physically impossible values. These are problems of Type3 in Decent Design.

With all this taken into account, we must conclude that homologation is not possible under
these circumstances. This creates monsters, huge monsters3. This is very dangerous and
appears in many of the vehicle files analyzed.

3Especially in a module called TREP03 which shall be discussed later in this document.

26

4 Cut theory broken by authorities

EXECUTIVE SUMMARY
In the this section we will show the case of new driver cards that contain activities
registered previous to their issue date. This means that there is false information and a
possible data contradiction when comparing the new and the old card.

A significant amount of the driver cards analyzed while elaborating this document contained
the following irregularity: there were activities registered that supposedly took place before the
card was issued.

As we mentioned in Section 3, Cut theory states that:

1. The four possible activities of a driver prescribed by Regulation 561/06 (DRIVING,
BREAK/REST,WORK, and AVAILABLE) are incompatible with the input of real tacho-
graph data.

2. During periods where no information is recorded, Cut theory suggests the creation of a
new driver activity NO DATA or to automatically assign these periods to be NO DATA
to REST.

As mentioned above, there is an irregularity in some driver cards: they contain activities
from a date previous to the card’s issuing date. This is another example of Cut theory:
when an old driver card is replaced by a new one, the period of time between the last
activity registered in the old card and the first activity registered in the new one is a
period of NO DATA. But when this irregularity occurs, i.e., when there are activities
registered before the issuing date of the card (that coincide with activities registered in
the old one), the NO DATA interval is broken.

In Figures 4.1 and 4.2 we present the old driver card of a Spanish driver (card 0-0-1) and the
activities registered there until 15/Feb/2016, respectively.

Figure 4.1: EF_Identification data of card 0-0-1 (the old card).

33

Figure 4.2: EF_Driver_Activity_Data data of card 0-0-1 (the old card).

This driver had a new card issued (card 0-1-1), with the information and registered activities
shown in Figures 4.3 and 4.4, respectively.

Figure 4.3: EF_Identification data of card 0-1-1 (the new card).

Figure 4.4: EF Driver_Activity_Data data of card 0-1-1 (the new card).

The cardIssueDate of the new card is 24/Feb/2016 00:00:00, but as we can see in Figure 4.4,
there are activities registered on 03/Feb/2016. This may be due to the testing that is done
on driver cards before they are issued (the interoperability test mentioned in Section 2, among
others), but still, traces of this testing should not remain, and all recorded data that doesn’t
correspond to reality should be erased before deploying a card. The BREAK/REST registered
on 03/Feb/2016 is false data.

34

Observe now the graphs of both cards concerning the same days in Figure 4.5. In the new card
the activity is REST, whereas in the old card there are several different activities registered,
one of which is DRIVING. The driver is resting and driving at the same time, depending
on the card you check!

Figure 4.5: Driver activity from both cards: new card 0-1-1 (top graph) and old card 0-0-1
(bottom graph).

When combining the data from both cards, contradictory information can appear since there
are days with recorded activities in both cards and these may not coincide. This is precisely
what happens in the example shown.

In the file we examined above, the difference between the date of the first activity recorded
and the card issue date is of approximately a month. However, we have found files with more
than one year of difference between both dates, as the following examples of driver cards from
Germany (Figure 4.6) and the Netherlands (Figure 4.7) show.

Figure 4.6: EF_Identification and EF Driver_Activity_Data data from a driver card issued
in Germany.

In this German driver card (Figure 4.6), the card issue date is 16/Dec/2015, but there are
activities recorded not only some days before that, but also on 04/Jan/2012!

35

Figure 4.7: EF_Identification and EF Driver_Activity_Data data from a driver card issued
in the Netherlands.

In this Dutch driver card (Figure 4.7), the card issue date is 27/Oct/2017, but there are
activities recorded on 21/Nov/2013.

This situation breaks the Cut theory tool Police Controller® uses to make sense of NO
DATA intervals.

This is a violation of Type3 in Decent Design. We found this irregularity in a few of the files
examined, as can be seen in Table 4.1.

Table 4.1: Number of files with the irregularity discussed in this section, and average difference
of days between the first activity recorded by a card and the card’s issue date (in this order),
per country.

Country Number of files Average difference (days)
Spain 3248 248
Lithuania 2305 123
Belarus 1409 108
Italy 1040 19
Netherlands 932 46
Romania 702 1197
Portugal 643 64
Ukraine 575 364
Bulgaria 494 44
Poland 488 45
Germany 273 20
Slovakia 69 14
Latvia 67 262

36

Table 4.1: (continued)

Czech Republic 59 11
Belgium 53 13
Russia 46 5
Hungary 32 9
Moldova 30 567
Slovenia 29 13
France 17 9
Croatia 15 14
United Kingdom 9 13
Ireland 4 194
Greece 3 9
Serbia 3 11
Norway 2 16
Estonia 2 9
Austria 1 4
Sweden 1 22
Turkey 1 3
Georgia 1 12

Taking into account what we have exposed above, it is clear that no detailed analysis of driver
cards is performed before they are issued. Were this the case, this kind of irregularities would
not be so frequent. Furthermore, tachographs do not check whether new driver cards are of
the expected format or if there are any inconsistencies. As we have seen in Section 2, there are
other cases were non-valid driver cards are also accepted by the tachographs.

We must add that when data from old and new cards conflict (due to there being activities
registered on the same dates), most ddd files interpreting software do not know how to behave
or which data to believe. Therefore, a manual reading of both files is needed to understand
where the conflict is. This is a complex process to automate.

Should files that contain an obvious internal contradiction be accepted or rejected?

37

5 Driving for 36h and 12 minutes in Germany: 6 555€
fine and 10 000€ bail

EXECUTIVE SUMMARY This case is analogous to the one presented in Section 3. A
driver received a severe sanction for exceeding the allowed daily driving period. However,
a careful analysis of the driver file reveals that we are actually facing a new instance
of what we called Cut Theory in Section 3. There was a power supply interruption
while this allegedly long driving period took place, and hence the data was not properly
recorded. Since the law fails to recognize periods where no information is recorded by the
tachograph, this is not detected unless a deep analysis of the files is performed. When
the situation was presented in court, the case was cancelled.

The fine partially shown on Figure 5.1 charges the driver 10 000€ for, among other things,
having driven a total of 36 hours and 12 minutes between 04/Nov/2013 03:41 and 06/Nov/2013
02:12. The complete fine and court sentence can be found at the end of this section.

Figure 5.1: Excerpt of a monetary imposition of 10 000€.

If we look at the data from the driver card, we find the following information:

Figure 5.2: Driving status of the driver between 04/Nov/2013 and 06/Nov/2013.

38

Figure 5.3: Data from EF Driver_Activity_Data.

Figure 5.4: Data from EF Events_Data.

As we can see in Figure 5.3, the EF Driver_Activity_Data module recorded driving activity
between 04/Nov/2013 15:51 and 05/Nov/2013 12:02, with a total duration of 20h and 11
minutes. If a recording of driving for more than 20h straight isn’t enough indication of a mistake
from the tachograph, the EF Events_Data module confirms it: a Power supply interruption
event took place between 04/Nov/2013 16:16:46 and 05/Nov/2013 12:01:57. This means that
the information from the EF Driver_Activity_Data during that period cannot be fully trusted
and, therefore, that the fine is ill-founded.

We find another instance of Cut theory: the law should either recognize a new driver status NO
DATA to be assigned to periods with no reliable information (such as the one presented here),
or state that those periods should be automatically set to REST, to avoid unfair fines.

As we have already mentioned in Section 3, Police Controller® allows the user to automatically
assign the periods with NO DATA to REST. The result of such a substitution can be seen in
Figure 5.5.

39

Figure 5.5: Data recorded by the driver card and the vehicle on both slots after having replaced
NO DATA with REST.

Although we have set the NO DATA period to REST, the Police Controller® software still
detects driving (red line) between the OFF and ON indicators. Why does this happen? It
turns out that a false event was recorded in the middle of the power supply interruption (see
Figure 5.6).

Figure 5.6: False event.

The law stipulates4 that a driving status should be recorded each day at 00:00 containing
the same information as the last driver status of the day before. However, how could this
happen while the tachograph was out of power? Bear in mind that this driving status is from
05/Nov/2013 00:00, and that the tachograph was switched on again on the same day at 12:01:57.
Does it make any sense?

For the reasons explained in Section 3, in this case we have problems of Type1 in Decent
Design, Type3 in Decent Design and FORMALLY VERIFIED SOFTWARE condition 3.

4Articles 5.2.5. of 3821/85 and 4.5.3.1.9. of 799/2016.

40

6 Diving with card not inserted for 0h00min: a 600£
fine

EXECUTIVE SUMMARY
In this section we will present the case of a driver fined for, among others, driving with
no driver card inserted for a total of 0h00min. This nonsense is not the only problem
present in the case: in fact, the date of the “infraction” that appears on the printed ticket
does not correspond with any information stored in the vehicle file. Instead, the vehicle
file registered another period of driving with no card that does not appear in the printed
ticket. To sum this up, the printed ticket and the vehicle file contain different pieces of
information, although both of them were generated by the same tachograph. The case
was presented to court but it was not cancelled.

Consider the excerpt of a fine presented in Figure 6.1. In this section we will focus on the first
charge: card removal.

Figure 6.1: Excerpt of the fine, indicating the infractions and the monetary sanction.

The fine includes the printed ticket from the tachograph as evidence of the driver’s illegal
behavior, which is partially shown here in Figure 6.2. The infraction is that of driving with no
card inserted. The total duration of the infraction is 00h00min.

Figure 6.2: Fragment of the ticket attached to the fine, showing the infraction of driving with
no card inserted on 28/Dec/2016 05:50 for a total of 00h00min.

It makes no sense to be fined for committing an infraction for 0h00min, and this is a violation
of Type3 in Decent Design. But leaving this problem aside, note that this infraction is not
even recorded in the TREP02 or TREP03 modules. In fact, according to the vehicle file (Figure
6.3), at 05:50 (the supposed time of the fine) the driver was on a BREAK/REST.

51

Figure 6.3: TREP02 data.

However, between 06:34 and 06:37 on that day, the driver is driving without an appropriate
card. Why didn’t the printed ticket output this infraction? Why did it print a nonexistent
infraction of no duration instead? This is more evidence of the unreliability of printed tickets.

People need to analyze the driver and vehicle files to check for irregularities before issuing a
fine (until these problems are fixed, and bugs and internal mistakes are avoided). The driving
without an appropriate card event happening from 06:34:30 to 06:38:01 (lasting 3 minutes and
31 seconds) has been properly recorded in TREP03 (Figure 6.4).

Figure 6.4: TREPO3 data.

But the presumed event that took place on 28/12/2016 05:50 is nowhere to be found in the
vehicle file (which was downloaded 6 days after the fine was issued). The information managed
by the police could not be presented as evidence, as long as the tachograph overwrote the
information in TREP03 node.

Therefore:

1. The printed ticket from the tachograph is accepted as evidence when its information is
not reliable. With this information we cannot prove anything, because the vehicle file

52

contradicts the ticket. What documents are sufficient to fine someone? Is the ticket
enough?

2. Does it make sense to have an infraction such as driving without an appropriate card with
a duration of 00h00min? This is a violation of Type3 in Decent Design, as we have
mentioned above.

3. Police officers confuse “driving” and “movement”. According to “the rule of the minute”
a truck can drive from Lisbon to Moscow recording only “rest”, as we will show in 15.

4. We know that TREP02 was not in “driving” activity during minute 5h50min (this part
was not overwritten), it seems that TREP03 recorded “driving with card not inserted”
at 5h50min, yet we have not a proof of that, only a ticket. This leads to a contradiction.

5. In the middle of all this data chaos, instead of realizing that the base of the proofs could
be potentially wrong, police officers decided to take one interpretation (among lots of
possibilities), and fine the driver for “driving with card not inserted”.

Here we run into a problem regarding legal certainty. In many occasions, the only evidence
for placing a fine comes from a printed ticket that, as we have shown several times in this
document, is unreliable. The vehicle file or driver card on which that fine is based is hardly
ever examined for irregularities in the data registered, or for confirmation of what the printed
ticket states. What should be a normal procedure to confirm that an infraction is actually
being committed is scarcely done. However, the careful inspection we are advocating for could
also be avoided if the software from tachographs was formally verified. That would make this
kind of mistakes very rare (or even nonexistent).

In this case, the infraction indicated by the printed ticket is not registered in the vehicle file
we examined. There is the possibility that it was there at the moment of the fine, and then
was overwritten, since our file was only downloaded six days after the control. To avoid the
situation of dealing with different files that contain different information, one would expect the
police to send the ddd files on which the fine is based to the accused driver, for him to be able
to verify the infraction and prepare their defense. However, this is seldom the case.

Table 6.1 describes how different countries deal with this issue.

Table 6.1: Behavior of different countries regarding whether they provide the original file as
evidence (by default or after request). Red countries never send files at all, whereas green
countries do so after request.

Country Is the file sent by default? Is the file sent on request?
Spain No. Usually a printed list of

the activities of the driver or a
printed ticket is sent instead.

No. Their answer is that the company
should store the files for one year.

France No. A summary of the fines with
graphics from the driver and vehi-
cle files is sent if the cause of the
fine is driving without an inserted
card or tachograph fraud.

No. The law forbids police officers to
keep digital ddd files.

Belgium No. In most cases, a PDF with
a summary of the infractions and
with graphics is sent. This is done
for driver files, but not for vehicle
files.

No. The court hardly ever sends fur-
ther documents and files or even graph-
ics.

53

Table 6.1: (continued)

Netherlands No. Only a copy of the ticket or
a graphic is given.

No. Only a copy of the ticket or a
graphic is given.

Portugal No. Only the printed ticket is
sent.

No.

Poland No. No.
Italy No. No.
Czech
Republic

No. No.

Slovakia No. No.
United
Kingdom

No. Depends. The driver files and vehi-
cle files are subject to the rules of ev-
idence. If a case is challenged before
the courts, the prosecution will disclose
its evidence to the defendant before the
court hearing. If a case is not chal-
lenged in the courts, there is no obli-
gation to provide the files.

Denmark No. No.
Norway No. Not enough information to tell.
Sweden No. Not enough information to tell.
Germany No. Yes.
Austria No. Yes.
Switzerland No. They claim they do, but we have not

confirmed it yet.
Hungary No. They claim they do, but we have not

confirmed it yet.

The situation gets worse in some countries. In Belgium and Denmark, for instance, drivers
are forced to plead guilty whether or not they want to and are bound to sign documents that
forfeit the right to a legal defense. In some other countries, they get at least a 30% discount if
they do, like Italy and Spain.

54

7 25 000DKK fine and driving license suspended in Den-
mark

EXECUTIVE SUMMARY
On 15/Apr/2015, a fine involving a monetary penalty (for both the driver and the trans-
port company) and a conditional suspension of the driving license was issued in Denmark.
The driver was accused of violating the daily rest period imposed by Regulation 561/06
and for driving without an appropriate driver card for two minutes (between 09:09 and
09:11 on that day).a

When the vehicle file was analyzedb, some irregularities were found concerning the in-
formation contained in TREP02 (where the driver activity data is stored) and TREP03
(where the events and faults are stored) modules. The data of both modules contradicted
each other and the storage rules of events stipulated by the law were not respected. The
case was brought to court and canceled.

aFine available at the end of the chapter
bFile downloaded on 08/May/2015 with verified digital signatures.

There are three main irregularities present in the analyzed vehicle file, which we analyze in the
following subsections.

7.1 Information stored in TREP02 but not in TREP03

The driver activity data of the vehicle file keeps record of any changes in the driving status, slot
number, card status, activity, and date and time of change. If there is an entry with activity =
driving and card status = not inserted in TREP02, we expect this information to be also stored
in TREP03, as long as it is the longest event over the last 10 days or one of the five
longest events over the last 365 days (as Articles 12.8 of Regulation 3821/85 and 3.12.8
of Regulation 799/2016 indicate).

The data concerning the accusation of driving without an appropriate card for two minutes is
properly recorded on the TREP02 module, as can be seen in Figure 7.1

Figure 7.1: TREP02 module of the vehicle file. The image shows a fragment of the driver’s
activity on 15/04/2015, the day of the infraction. From 09:09 to 09:11 there is a driving activity
with cardStatus = not inserted.

However, this information does not appear in TREP03, despite being the longest event in one of
the previous 10 days. This is a violation of the storage rules stipulated in Regulations 3821/85
and 799/2016.

60

7.2 Event stored in TREP03 but not in TREP02

If we continue analyzing the file beyond the information relative to the accusation, we see
other irregularities. For instance, five days later, on 20/Apr/2015, another Driving without an
appropriate card event is stored in TREP03, as can be seen in Figure 7.2.

Figure 7.2: TREP03 module of the vehicle file. As we can see, on 20/Apr/2015 there is a
Driving without an appropriate card event between 19:08:23 and 19:11:05.

We would expect this information to be also present in TREP02 but this is not the case. There
is no entry in TREP02 with values activity = driving and cardStatus = not inserted on the
same date (Figure 7.3)

Figure 7.3: TREP02 module of the vehicle file. On 20/Apr/2015 the driver was working between
19:09 and 19:13, so he could not have been driving without an appropriate card.

We conclude that the data in TREP03 contradicts the data in TREP02 and there is no way to
know which one is right and which one is wrong.

7.3 Information stored in TREP02 and TREP03 but with different
durations

On 28/Apr/2015 another Driving without an appropriate card event is stored in TREP03 of
the same driver (see Figure 7.4).

61

Figure 7.4: TREP03 module of the vehicle file. On 28/Apr/2015 there is a Driving without an
appropriate card event between 20:31:54 and 20:37:57.

As we can see, according to TREP03, the event had a duration of 6 minutes and 3 seconds.
But the data in TREP02 contradicts this (see Figure 7.5).

Figure 7.5: TREP02 module of the vehicle file. On 28/Apr/2015 there is a driving activity
with cardStatus = not inserted between 20:34 and 20:36.

TREP02 also records a period of driving with no card, but it is only of 2 minutes. Again, we
have no way of knowing which of the two modules (if any) contains the correct information.

Conclusion

The vehicle file in which the fine was based is full of inconsistencies between TREP02
and TREP03 modules. Can this file be trusted? Which information should we trust if
both modules display different facts? A fine with such severe sanctions should not
be based on a file with dubious and contradictory information.
There is an even worse future scenario. According to a new regulation coming in force,
the data stored in TREP03 will be directly sent to police officers, with no need of a road
control.

Furthermore, the tachograph does not strictly follow the regulation. In this case, this is due
to not storing the Driving without an appropriate card event when it should have had. It is
either caused by a malfunction of the tachograph or by a mistake in the code. The
fact is that it is not behaving as it would if the regulation was thoroughly followed.
This cannot be permitted when sanctions such as this one are involved.

This is a problem of FORMALLY VERIFIED SOFTWARE condition 3, since the regulation is
not being thoroughly followed. The contradictory information stored in tachographs might be

62

caused by an internal bug or poorly designed code. As in other cases, formal verified software
implemented in tachographs could avoid these kind of problems.

63

8 355 000DKK fine and jail time in Denmark

EXECUTIVE SUMMARY
In the present section, we present the case of a driver fined with very severe sanctions
for, among others, driving without an appropriate driver card for 37 minutes. If we look
at the vehicle file, we find that the infraction is properly recorded in TREP02. However,
the information stored in TREP03 contradicts this data: according to it, the alleged
infraction takes place a few minutes later and has a shorter duration.
This problem comes from the lack of a proper definition for driving time in the regula-
tions (see Section 3) and the incompatibility between activities recorded with a resolution
of minutes and events recorded with a resolution of seconds. This incompatibility leads
to contradictory data and there is no way to know which one is the “real” one (if any).
When this case was brought to court, the monetary charge was reduced by 50%.

The sanctions for the mentioned accusation include:

1. 30 days of conditional prison for the driver;

2. 253 000DKK (reduced to 125 000DKK) for the company;

3. 102 000DKK (reduced to 50 000DKK) for the driver.

Excerpts of the fine can be found in Figure 8.1. Both the full fine and the sentence are printed
at the end of this section.

Figure 8.1: Excerpt of the fine.

One of the charges was driving without an appropriate card between 19:56 and 20:33 on
29/Oct/2014. The transgression lasted for 37 minutes, and the total distance traveled was
44 km.

When we check the data from the vehicle file, we see in TREP02 that there was driving
activity with card not inserted during the exact period of the accusation (see Figure 8.2),

70

and in TREP03 that Driving without an appropriate card was registered between 20:04:09 and
20:22:29 (see Figure 8.3).

Figure 8.2: TREP02 module of the vehicle file on 29/Oct/2014.

Figure 8.3: TREP03 module of the vehicle file on 29/Oct/2014.

Some important anomalies show up here:

1. First of all, the events do not coincide in TREP02 and TREP03, they have been
calculated differently and contain contradictory information.

2. The data from TREP02 has a resolution of minutes whereas the data from TREP03 is
registered in seconds. Thus, we are faced with two different ways of computing driving
time. But those are not specified in the regulation, so we don’t know how they were
computed. What is Driving Time in seconds? How is it calculated? If the law
does not clarify this, then the programmers are the ones making that decision: they are
(accidentally) making legal decisions.

A tachograph is a device essentially designed to compute driving times. Then, how is
it possible that we don’t have a proper definition of “driving time”? How is it possible
that, depending on the way you compute it, you end up with different results? This is
certainly not a desirable feature of tachographs.
Another question is pertinent here: should authorities be able to fine someone if they
have contradictory information on the same infraction? Which piece of data should they
trust?

The absence of a proper definition of driving time in the law is a problem of FORMALLY
VERIFIED SOFTWARE condition 3, while the difference of time resolutions in TREP02 and
TREP03 is a problem of Type1 in Decent Design.

71

9 The problem of having two different activities during
the same minute. Fine of 4 600€ for driving 28h10min.

EXECUTIVE SUMMARY
In this section, we will illustrate what happens when two activities are registered during
the same minute. The tachograph may confuse the order of the activities, and this can
lead to registering false data. This problem may occur due to the resolution with which
activities are registered: in minutes, rather than seconds. It may also occur due to the
requirement to automatically create a new driving status every day at midnight with
the same characteristics of the previous one. These problems are not negligible: a driver
received an unjust 4 600€ sanction because of them. When the case was brought to court
and this problematic was explained, the sanction got canceled.

Before presenting the example, we pose some questions:

• Is there a violation of the regulation if two different activities happen to be in the same
calendar minute?

• Does it make sense to have activities with no duration?

On 31/Mar/2009, a driver received a monetary sanction for not having had the required daily
rest period between 06/Mar/2009 11:21 (end of the previous daily rest period) and 07/Mar/2009
20:53 (beginning of the following rest period) and having driven a total of 28h and 10min in
this interval. In Figure 9.1 we see an excerpt of the fine (the complete fine, along with the
court sentence, can be found at the end of this section).

Figure 9.1: Excerpt of the fine, indicating a penalty of 4 600€.

We examine the Driver activity data stored in the driver card on the critical dates. Relevant
excerpts can be found in Figures 9.2 and 9.3.

As we can see in Figure 9.2, there are two events registered on 07/Mar/2009 00:00. The first,
with activity DRIVING is the driver status at 00:00 that the law requires, copying the
last activity from the previous day (which is registered at 22:05). However, in this case the
driver also changed the driving status to BREAK/REST at 00:00, which resulted with the
tachograph registering two events on the same date and time. This violates the requirement
Type3 in Decent Design, since two activities cannot happen at the exact same moment.

This irregularity is very frequent in driver cards: out of the 1 282 687 analyzed,
44.71% of them contained this irregularity.

In this case, we have to take into account that when different activities are assigned to the
same minute, it is impossible to know in what order different software will output them. In

97

Figure 9.2: EF_Driver_Activity_Data.

Figure 9.3: Graphic made with the data in EF_Driver_Activity_Data.

98

this case, the program used by the police officers changed their order, and this is the reason
why a driving period of 28h10min was registered.

Furthermore, in this case the irregularity caused an unjustified fine being issued. In Figure 9.2
(from Police Controller®), the DRIVING activity is listed before the BREAK/REST. From
there we can infer that the driver had its daily rest period from 00:00 to 09:06 on 07/Mar/2009.

But there is another problem in this case, a problem of mathematical consistency, that is a
violation of Type1 in Decent Design. Articles 4 (Paragraph 039) of Regulation 3821/85 and
3.4 (Paragraph 50) of Regulation 799/2016 stipulate that This function [the one that computes
the driver’s activities] shall output activity changes to the recording functions at a resolution of
one minute. But at the same time, the variable TimeReal, as is defined in Appendix 1 of both
regulations (see Figure 9.4), stipulates that tachographs should store dates with the resolution
of one second!

Figure 9.4: Article 2.162 of Regulation 799/2016, which coincides with article 2.110 of Regula-
tion 3821/85.

Tachographs do not really register the driver’s activities in minutes, but in seconds. There is a
part of the law dedicated to stipulating how to manage and transform the activities registered
in seconds to assign a single activity to each minute.

The fact that tachographs are allowed to register two activities at the same time leads to
inconsistencies or wrong interpretations of the driver’s activity. If the time resolution was in
seconds instead of minutes, this might have been avoided, for instance if the midnight activity
was registered at 00:00:00 and the change to BREAK/REST at 00:00:13.

Due to the flaws of the regulation and the behavior of different ddd file readers, a fine is unfairly
given to a driver that did not break the law. This should not be allowed to happen.

As we have shown in this document, irregular files are not an exception, so every fine must be
supported by the evidence found in the vehicle file and/or driver file. If they contain some kind
of irregularity, the data cannot be trusted.

99

10 The unbelievable “card not inserted” event in driver
cards.

EXECUTIVE SUMMARY In this section we will show that Regulations 3821/85
and 799/2016 allow a paradoxical combination of driver status: the recording of driving
activity with no driver card inserted. A driver card which is not inserted can not possibly
record that it has been not inserted. The decisions that have to be taken by software
developers under these circumstances could try to be logical and fair, but do logical and
fair decisions comply with the law?

Let us consider the following situation concerning data status. Imagine the combination:

activity = Driving
cardstatus = Not inserted
vehicleguidance = Single
slot = Slot 1

This combination complies with the data range and is not forbidden in a driver file by the
regulation. But we should ask ourselves: what does this theoretically possible data status
mean, exactly? Take into account that this would be a situation in which, at the moment in
which the card was inserted, it memorized the fact that it was not inserted and driving. This
is a physical paradox, since it is physically impossible to be inserted and not inserted at the
same time.

Now let’s see what Police Controller® says about a case like this. We begin by finding a driver
file where this kind of failure occurs, depicted in Figure 10.1.

Figure 10.1: Node Details/Failures of a driver file where the card is not inserted as seen in
Police Controller®.

If we interpret DRIVING with card not inserted as DRIVING, we obtain the graphic of Figure
10.2, which shows an enormous driving period.

Figure 10.2: Node Single Graphics of the driver file above as seen in Police Controller®,
showing an unbelievably long driving period.

106

By checking the driver activity (Figure 10.3), we see that there are two instances of [DRIVING,
not inserted].

Figure 10.3: Node EF_Driver_Activity_Data of the driver file above as seen in Police Con-
troller®, showing two instances of [DRIVING, not inserted].

If instead we interpret these periods of paradoxical data status as periods of NO DATA, which
is the suggested driver status introduced in Section 3, the long period of driving shown is Figure
10.2 is now no longer there, as can be seen in Figure 10.4.

Figure 10.4: Node Single Graphics of the driver file above with NO DATA instead of [DRIV-
ING, not inserted] as seen in the Police Controller®, showing reasonable driving periods.

Of course, NO DATA is not a valid status in Regulations 3821/85 and 561/06. An alternative
is to interpret the impossible value as REST. The result of doing so can be seen in Figure 10.5.

Figure 10.5: Node Single Graphics of the driver file above with REST instead of [DRIVING,
not inserted] as seen in the Police Controller®, showing reasonable driving periods.

107

We end this section with some questions:

1. If the combination [DRIVING, not inserted] is considered correct (as it is by the regula-
tions), should we fine drivers when it occurs?

2. If the combination is considered a serious mistake and instead we change the activity to
NO DATA or REST, are we violating the regulation?

3. How does other software written to compute information on driver activity handle situa-
tions such as this one, where there are physically impossible values?

Be aware that data analysis from an extensive european legal service provider's database
showed that 4.73 % of the files have this kind of combination.

This is a problem of Type3 in Decent Design. It is also the most compelling evidence that
Type3 is necessary in the list of requirements.

108

11 Over speeding in TREP03 in less than 60 seconds,
the simplest and easiest case of verification

EXECUTIVE SUMMARY In the present case, we will show that the rules for trig-
gering and storing the Over speeding event stipulated by the law are in some cases ignored
by tachographs. This implies a violation of the regulation.

In Sections I of Regulation 3821/85 and 1 of 799/2016, the precise definition of Over speeding
is given (in (bb) and (hh) respectively).

Figure 11.1: Article 9.7 of Regulation 3821/85

Figure 11.2: Council Directive 92/6/EEC (1)

The maximum authorized speed for trucks is 90 km/h.

We have encountered vehicle files where the Over speeding event is triggered and stored in the
tachograph’s TREP03 module while the vehicle exceeds the authorized speed for a period of
3 or 4 seconds. According to the regulation, this event should not be stored, since it is not a
period of more than 60 seconds, therefore, it does not fit into the definition of Over speeding
given by the law.

109

Figure 11.3: Data from TREP03 module of the vehicle file. It recorded an Over speeding event
on 12/Apr/2016 from 12:03:53 until 12:03:56. The Over speeding event lasts only 3 seconds.

Figure 11.4: Screenshot of module Kalamua from Police Controller®, which detects the in-
compatibility between what the tachograph actually does and what the law stipulates.

Big data processed by a european legal service provider's database shows extensive instances
of this kind of mistake. This is a violation of FORMALLY VERIFIED SOFTWARE condition
3. According to the new regulation coming into force, the information in TREP03 will be sent
automatically to police officers via wireless technology, with no need for road control. This is
a dangerous situation, since as we have shown, tachographs do register infractions in TREP03
that should not have been considered so, according to the regulation.

110

12 Big divergences between TREP03 and TREP04 in
Over speeding

EXECUTIVE SUMMARY In the present case, we will show that the trigger and
storage rules for the Over speeding event stipulated by the law are in some cases ignored
by tachographs.

The law says:

Figure 12.1: Article 12.8. of 3821/85

Can we guarantee that the tachograph does this correctly in TREP03? Not at all. In fact, in
many vehicle files, the Over speeding event storage rules do not seem to follow the regulation.
There are Over speeding events registered in the TREP03 module, which leads us to expect
that they must meet one of the three conditions given by articles 12.8. and 3.12.8 of 3821/85
and 799/2016. As we will show, this is not always the case. Morover, comparing this data with
the one stored in TREP04 module (where detailed speed of the vehicle is stored) we encounter
more serious events (even occurring in the same day) that have not been stored in TREP03 (in
spite of being the most serious events for one of the 10 last days of occurrence or one
of the 5 most serious events over the last 365 days), violating what the law stipulates.
Besides, we also see that the information in TREP03 and in TREP04 is sometimes in mutual
contradiction.

The following fragments of data from two different vehicle files can serve as an example to
illustrate this problem. In the first example, Figure 12.2, we can observe that the tachograph
has selected a particular Over speeding event registered in TREP03 as one of the most serious
events for one of the last 10 days of occurrence:

111

Figure 12.2: Data from TREP03 module of the vehicle file. It recorded an Over speeding event
on 08/Jun/2015 from 06:12:31 until 06:12:35.

The problem is twofold: not only does the event last only four seconds, and therefore should
not be considered an Over speeding event (since the law establishes a minimum of 60 seconds
of exceeding the speed limit in order for it to be considered Over speeding), but also there is
an apparent arbitrariness of the tachograph in selecting this event as the most serious of the
day, since it is inconsistent with the data recorded in TREP04 as we shall see.

If we analyse the data stored in TREP04, we can observe that there had been other Over
speeding infractions committed that same day, some of them being more serious than the one
the tachograph regarded as the worst one. Police Controller® is able to detect the irregularity
of selecting this particular event as the most serious, and shows different counterexamples of
over speeding during the same day that are worse than the one in Figure 12.2:

Figure 12.3: Screenshot from Police Controller ® where different Over speeding events more
severe than the one regarded by the tachograph as the most serious.

As we can see in Figure 12.3, at 22:53:00 on the same day, there was an Over speeding event
with an average speed of 98 km/h and a maximum speed of 107 km/h. In the figure below,
Figure 12.4, we can see the detailed speed of this minute:

112

Figure 12.4: Data from TREP04 of the vehicle file.

Why has the tachograph not stored this event on TREP03? Why has it stored an Over speeding
infraction with a smaller maximum speed value and average speed value if it is not the most
severe of the day? This constitutes a violation of FORMALLY VERIFIED SOFT-
WARE condition 3.

In the second file displayed in Figure 12.5, we see that the tachograph has stored the following
Over speeding event as one of the 5 most serious events over the last 365 days:

Figure 12.5: Data from TREP03 module of the vehicle file. It recorded an Over speeding event
on 12/Jul/2008 from 22:52:50 until 22:53:50.

As we can see in the image, during that period the maxSpeedValue was 104 km/h, whereas
the averageSpeedValue is set at 95 km/h. However, by looking through the TREP04 module,
where the said speed data is stored, we encounter the following:

113

Figure 12.6: Data from TREP04 module of the vehicle file. It shows the speed of the vehicle
on each second from 24/Jul/2008 05:24:53 until 24/Jul/2008 05:25:53.

We can see that the maximum speed value reached 109 km/h and the average speed was of
95.82 km/h. On the same day a couple of minutes later, the maxim speed value reached 108
km/h and the average speed was of 97.72 km/h:

Figure 12.7: Data from TREP04 module of the vehicle file. It shows the speed of the vehicle
on each second from 24/Jul/2008 05:26:53 until 24/Jul/2008 05:27:53.

Nevertheless, these two minutes of over speeding (Figure 12.6 and 12.7), undoubtedly more
serious than the one from Figure 12.5, were not stored in the TREP03 module as one of the

114

most serious events over the last 365 days. This is properly detected by the Kalamua module
of Police Controller ®.

These are only two examples, the file contains more cases of more severe Over speeding events
than the one presented in Figure 12.5 that are not properly stored.

With all these problems in mind, the following questions are to be answered: Can these
files be trusted? If the storage mechanism is failing can we rely on its other information?
Can the police officers issue fines for something that the tachograph registered as an Over
speeding event, even though the regulation does not regard it as such? These questions
become even more relevant when we learn that a new policy is to be implemented where
TREP03 information will be automatically sent to police officers. But if this information
is sometimes contradictory with that found on TREP04, can we trust it?

The following fine imposed a sanction of 10.000€ to a driver in Beviliers on 14/Jun/2016 accused
of tachograph manipulation. The only proof they had was the over speeding events registered
in TREP03. A european legal service provider convinced the court that TREP03 could not
be trusted (due to all its internal malfunctions) and the court took it into consideration and
canceled the case (see the court resolution below).

115

13 Activity time discrepancies between slot1 and slot2

EXECUTIVE SUMMARY In this chapter we expose a major and unacceptable fail-
ure in tachographs: The registration of a single event at different times, depending on
the slot/driver card that is analyzed. This case shows us the severity of the currently
known errors in the technology and can only make us fear for potential errors that have
not yet manifested themselves.

We are facing the strange problem of having one activity that affects both driver and co-driver
(recorded in slot1, slot2 respectively) but is shown in different times. Belgium Federal Police
suggested that this could be a case of tachograph manipulation.

The experts from a european legal service provider carried out exhaustive tests on techniques
applied to all kind of tachographs looking for evidence of manipulation (and hence illegalality).
They didn’t find any proof or evidence that could lead to this conclusion. Moreover, it was
shown that this data behavior always happens, with or without manipulation.

As it turns out, sometimes one slot registers the event after the other, with each slot registering
the event independently. Let us consider the following case analyzed by the Kalamua tool
from Police Controller® where slot2 is 1 minute faster than slot1:

Figure 13.1: Data from the Kalamua tool.

Or this case in which slot1 is 15 minutes faster than slot2

Figure 13.2: Data from the Kalamua tool.

This mistake in data behavior is directly affecting the definition of driving time duration.
If the driving time is computed as the difference between one driving activity and the
next registered activity, and if this change of activity occurs at different times at slot 1
and slot 2, then we might conclude that the data from slot 1 is not correct and/or neither
is the data from slot 2.

It is also a serious problem that exposes the lack of control in the tachograph processes. Who
is responsible of this erratic and unjustified data behavior?

The data we encounter here violates physical coherence, since an event that is happening in a
given time is recorded in different moments. Thus it is a problem of Type3 in Decent Design.

121

14 The definition of driving time: specific software anal-
ysis through different versions

EXECUTIVE SUMMARY The problem concerning the present case affects the com-
putation of driving time in tachographs. In the present section we analyse how different
versions and models of tachographs compute driving and calculate speed according to
the inputs they receive and expose the inconsistencies that derive from the method they
follow, and show that regulations are not strictly followed regarding the measurement of
movement.
We also consider two conditions the law stipulates for a minute to be regarded as driv-
ing. The law seems to indicate an order in which these conditions are to be applied,
but this order is not respected by tachographs. The order stipulated by the law is it-
self problematic and leads to undesirable consequencesa which might be the reason why
software developers decided to invert it, even though in doing so they were taking legal
decisions and thus acted as lawmakers. Finally, we will see that the description of these
conditions contains significant changes among different translations of the regulations,
yielding different versions of what is to be enforced.

aThis is analysed in a forthcoming publication: To drive or not to drive, TranJus workingpapers
series of the University of Barcelona, 2019.

As we mentioned in other sections, the regulations do not give a specific definition of what
driving time is or how it should be measured in an interval. However, it does give some
indications on how to compute it:

Figure 14.1: Article 2 [paragraph 019] of 3821/85, equivalent to article 3.2 [paragraph 24] of
799/2016.

Figure 14.2: Article 3 [paragraph 027] of 3821/85, equivalent to article 3.3 [paragraph 38] of
799/2016.

122

Figure 14.3: Article 3 [paragraphs 039, 041 and 042] of 3821/85, equivalent to article 3.4
[paragraph 50, 51 and 52] of 799/2016.

The question of whether we can translate these sentences into a mathematical algorithm that
specifically calculates driving time is relevant in this case. It is not always possible to translate
sentences from natural language to a formal language because of the inner complexity of the
former.

In this case, there is a relevant flaw in the regulation: movement and driving time are defined
separately but are not identified. Can we conclude that they are the same? This should be
made clear in the law. Also, movement is not clearly defined: when does it start, exactly? (At
second number 5? At second number 6?)

Regarding driving time, the concept is used in the regulations before a proper definition is given.
Moreover, the precise meaning of paragraphs 41 and 42 of 3821/85 depends on the translation
of the regulation one is looking at, since different translations imply different interpretations of
the same article. The differences between translations are outlined in Table 14.1.

Table 14.1: Differences between the translations of Requirements 41 and 42.

Requirement 41 Requirement 42
GER Wird zu irgendeinem Zeitpunkt inner-

halb der unmittelbar der Kalen-
derminute vorausgehenden und nach-
folgenden Minute die Tätigkeit LENKEN
registriert, gilt die gesamte Minute als
LENK-Zeit.

Für eine Kalenderminute, die auf-
grund der vorstehenden Randnummer
041 nicht als LENK-Zeit gilt, wird
die Tätigkeit angesetzt, die als läng-
ste Tätigkeit innerhalb der Minute aus-
geführt wurde (oder bei gleichlangen
Tätigkeiten diejenige, die zuletzt ausge-
führt wurde).

123

Table 14.1: (continued)

ENG Given a calendar minute, if DRIVING
is registered as the activity of both the
immediately preceding and immediately
succeeding minute, the whole minute
shall be regarded as DRIVING.

Given a calendar minute that is not
regarded as DRIVING according to the
previous requirement 041, the whole
minute shall be regarded to be of the
same type of activity as the longest con-
tinuous activity within the minute (or
the latest of equally long activities).

POL W danej minucie zegarowej, jeżeli
PROWADZENIE jest zarejestrowane
jako czynność w minucie bezpośrednio ją
poprzedzającej i następującej bezpośred-
nio po niej, to cała ta minuta liczy się
jako PROWADZENIE.

W danej minucie zegarowej, nietrak-
towanej jako PROWADZENIE zgodnie z
poprzednim wymaganiem 041, cała taka
minuta liczy się jako jedna czynność,
która trwała najdłużej w ciągu tej min-
uty (lub była późniejsza w przypadku
czynności o jednakowym czasie trwania).

FR Étant donné une minute calendrier,
si la CONDUITE est enregistrée comme
activité tant au cours de la minute qui
précède que de la minute qui suit immé-
diatement, la minute entière est compt-
abilisée comme de la CONDUITE.

Étant donné une minute calendrier
non considérée comme activité de CON-
DUITE en application de l’exigence
041, la minute entière sera considérée
comme relevant de la même activité que
l’activité continue la plus longue surv-
enue dans la minute (ou de la plus récente
en cas de plusieurs activités de même
durée).

IT Dato un intervallo di un minuto,
se GUIDA è registrata come attività
del minuto immediatamente precedente
e del minuto immediatamente successivo,
l’intero minuto viene considerato come
GUIDA.

Dato un intervallo di un minuto
non considerato come GUIDA in base
al precedente requisito 041, l’intero min-
uto viene considerato come attività dello
stesso tipo di quella continua di maggiore
durata verificatasi entro tale minuto (o,
nel caso di più attività di pari durata,
dell’ultima di esse).

ESP A partir de un minuto cualquiera, si se
registra alguna actividad de CONDUC-
CIÓN en los minutos inmediatamente
anterior y posterior, se considerará que
todo el minuto es de actividad de CON-
DUCCIÓN.

Dado un minuto cualquiera que no se
considere de CONDUCCIÓN con arreglo
a la condición 041 antes mencionada, se
considerará que todo el minuto será de un
mismo tipo de actividad, concretamente
la que haya tenido lugar de forma contin-
uada y durante más tiempo durante ese
minuto (en caso de haber dos actividades
de la misma duración, la que se haya pro-
ducido en último lugar).

As we can see, depending on the translation, conditions 41 and 42 change their meaning: it is
not the same to do the computing of driving time only on calendar minutes or on any minute
whatsoever. This can significantly change the result of such computations.

124

Tachographs are devices essentially designed to compute driving time. However, as we
have indicated, the law does not give a proper definition of driving time, so programmers
must figure out how to compute it. Because of this, in designing the tachograph software
they make a particular interpretation of the law and go beyond the written text by
implementing their own judgement. That is exactly what we mean by programmers
acting as lawmakers. This is caused by the lack of clarification and precision in the
regulation: if it were sufficiently clear, there would be no need for the software engineers
to implement something that the regulation is not specifically saying.

Nevertheless, we can do reverse engineering in order to figure out the algorithm that the tacho-
graph is using to compute driving time. This can be done by sending a concrete number of
impulses to the tachograph in a particular interval of time and then checking what the tacho-
graph is registering. In order to explain the experiment we carried out to do this analysis, we
must first mention a relevant mathematical relation (independent of 3821/85).

The characteristic coefficient of a vehicle (W) indicates the number of impulses the sensor must
send to register 1 km. The regulation establishes particular speed measurement tolerances for
vehicles with characteristic coefficients between 4.000 imp/km and 25.000 imp/km. Using the
simple conversion algorithm

1 imp/sec = 3600
W

km/h,

we can calculate at what speed (in km/h) a vehicle (which has a characteristic coefficient W and
is receiving 1 imp/sec) is moving. Thus, when a vehicle with W = 4000 imp/km is receiving 1
imp/sec, it will be moving at 0.9 km/h; if W = 25.000, under the same conditions it will have
a speed of 0.144 km/h.

By sending 1 imp/sec to different models of tachographs we obtained the results shown in the
tables below (the Actual Speed is calculated according to the formula given above). Observe
that the rounding each tachograph uses to compute the speed as a whole number might be
different depending on the model and version. Having the speed registered in TREP04, we can
then create our own driving time definition with this data and compare it with the driving time
recorded in TREP02.

Note: Before proceeding to show the results, we mention one important point. When carrying
out the experiment, we detected another infraction of the law performed by tachographs: the
regulation specifies that the vehicle will consider movement as soon as more than 1 imp/sec
is detected for at least 5 seconds. Here only 1 imp/sec was sent to the vehicles and movement
was already detected. Moreover, it is not clear what as soon as the function detects more than 1
imp/sec means: does it imply that if 61 impulses per minute (1.016 imp/sec) are detected this
is already considered movement? Or does it imply that at least 2 impulses per (single) second
are needed? This implies a violation of FORMALLY VERIFIED SOFTWARE condition 3.

We can now proceed to show the results of the testing performed when we are sending a constant
1 impulse per second:

Tachograph continental -vuSoftwareVersion ®: 2039

W
Actual
speed

Speed
on screen

Speed
on TREP04

Activity
on screen

Activity
on TREP02

4.500 0.8 km/h 0 0 driving driving
8.500 0.42 km/h 0 0 driving driving

125

Tachograph continental -vuSoftwareVersion ®: 3037

W
Actual
speed

Speed
on screen

Speed
on TREP04

Activity
on screen

Activity
on TREP02

4.500 0.8 km/h 1 1 driving driving
7.500 0.48 km/h 1 1 driving driving

Tachograph stoneridge SE 5000-vuSoftwareVersion ®: P5HM

W Actual
speed

Speed
on screen

Speed
on TREP04

Activity
on screen

Activity
on TREP02

4.500 0.8 km/h - 1 driving driving
8.570 0.42 km/h - 0 driving driving

Tachograph stoneridge SE 5000-vuSoftwareVersion®: P8KS

W Actual
speed

Speed
on screen

Speed
on TREP04

Activity
on screen

Activity
on TREP02

6.000 0.6 km/h - 1 driving driving
7.500 0.48 km/h - 0 driving driving

The conclusions we can establish from these results are the following:

1. Different tachographs register speed differently. In these cases, the speed measurement
is done with a resolution of 1 km/h. The way of computing the speed is different in
each case, even with the same characteristic coefficient (and thus, the same speed when
recieving 1 imp/sec). Continental 3037 and Stoneridge P8KS store different speeds in
TREP04 when W = 7.500. If two vehicles are moving at the same speed, why does the
speed stored by the tachograph differ? How can it depend on the model of the tachograph
they are using? This is probably caused by the rounding (from decimal to integer) each
tachograph model has implemented, so in order to obtain unified data, the law must be
clear on how it must be computed and not allow this kind of divergences to take place.

2. Continental tachographs changed algorithms between versions 2039 and 3039. In the
former, it appears that a rounding down was being applied to the calculation of speed.
In 3039 they appear to do the opposite, that is, rounding up. This implies that in version
2039, there can be movement with speed = 0 km/h, which is absurd and constitutes
a violation of Type3 in Decent Design.

3. Stoneridge tachographs did not change their algorithm and perform a standard rounding.
This implies that it may also occur that there can be movement with speed = 0
km/h, which is a violation of Type3 in Decent Design. Note that this happens only
when the vehicle is receiving 1 imp/sec and W > 7200, since when W = 7200 imp/km
this implies moving at 0.5 km/h.

Hence, from the results obtained of the testing performed in Continental - version 3037 and
any Stoneridge version that satisfies W ≤ 7200 (since otherwise it can occur that there exists
movement with a speed of 0 km/h, which is absurd), we can do reverse analysis and compute
our own driving time from the speed recorded. Note that in version 3037 and any Stoneridge
with W ≤ 7200, to receive 1 imp/sec is equivalent to be moving at 1 km/h. According to this
reverse analysis, we can conclude that tachographs actually do the following:

1. After 5 seconds receiving 1 imp/sec, they consider that the driving status has started; we
call this the ‘provisional driving status’.

126

2. The moment they stop detecting any impulse per second, the system changes to ‘provi-
sional no driving status’.

3. After that, the system makes a list in seconds of provisional status of driving and not
driving.

4. The system (that works in UNIX, as we will show in the following section) decides for
each interval if it should be regarded as ‘real driving’ according to condition 42.

5. Condition 41 is applied to the (yet) undecided minutes.

This procedure is what tachographs do when computing driving time. If we apply this algorithm
to the data stored in TREP04, we can obtain 99.5% of the times the same values as the ones
stored in TREP02 in the tachograph. But this procedure is not the one that the law
states. The law specifies two conditions (41 and 42) on which a calendar minute
shall be regarded as driving in spite of the vehicle not moving for a few seconds. The
software of the tachograph obeys these two conditions but in an inverse order, which
significantly changes the calculation of driving times. They should apply condition 41
and, after that, apply condition 42. Instead, condition 42 is applied first.

It might be possible that the software engineers in charge of designing the tachograph code
thought it was inconsistent to apply condition 41 before condition 42, and consider it more
logical to apply condition 42 first. If this were the case, it would be voluntary violation of
the law, because a change in the order is far from negligible; on the contrary, it significantly
changes the tachograph output.

We were able to conclude that the order performed by the tachograph is 42-41 instead of the
41-42 stipulated by the law with the following experiment: within a period of three minutes
we sent impulses to the tachograph alternating intervals of 1 impulse/second with intervals of
0 impulse/second in the following way (before and after the tachograph was not receiving any
other stimulus, it detected no impulses):

Interval Impulses sent
[0 : 00, 0 : 40] 1 impulse / second
[0 : 40, 1 : 00] 0 impulse / second
[1 : 00, 2 : 00] 0 impulse / second
[2 : 00, 2 : 40] 1 impulse / second
[2 : 40, 3 : 00] 0 impulse / second

The data registered by the tachograph within these 3 minutes was to be found in TREP02,
where the driver activities are stored. If tachographs were correctly following the regulation,
this would be the expected data in TREP02:

Expected data
[0 : 00, 1 : 00]→ driving
[1 : 00, 2 : 00]→ work 5

[2 : 00, 3 : 00]→ driving

Condition 41 cannot be applied to any of the three minutes (no minute is regarded as driving or
at least none is full movement, and we have no definition for that) and condition 42 is applied to
the first and the third minute: since driving (moving) is the longest continuous activity within
the minute, both minutes are regarded as driving.6

5According to condition 37/48, When the vehicle stops, WORK shall be selected automatically for the driver.
6Note that here we use the English version of condition 41 “as THE activity” in English instead of “ALGUNA

actividad” in Spanish which should be translated as “ANY activity” in English.

127

However, this is not the output we obtained. On the contrary, this is what TREP02 stored:
Obtained data

[0 : 00, 3 : 00]→ driving

This data coincides with the one we would have obtained if conditions 41 and 42 were applied
in an inverse order. If condition 42 is applied first, the first and the third minutes are regarded
as driving, since it is the longest continuous activity within the minute. But then, if we apply
condition 41, the second minute is also regarded as driving, since driving is registered as the
activity of both its preceding and succeeding minute. Hence, all three minutes are regarded as
driving.

In the next section, we perform an in-depth analysis of the exact consequences of applying
conditions 41 and 42 in the correct order stipulated by the regulations.

These tests were performed on Continental 4.0 software version 40.42
(second generation tachograph) and the results were the same as with the
3.0. Furthermore, Time Real also works in UNIX calendar.

128

15 The Unix vs. UTC problem

EXECUTIVE SUMMARY
After deep analysis and investigation of tachograph technology, we have discovered a
disturbing problem regarding time measurement: all the data coming from the tacho-
graph is computed under the Unix standard, while the law specifically requires the UTC
standard. This seemingly innocuous fact has the potential to generate problems of large
proportions, which we illustrate bellow.

We start by reminding the reader of some notions.

• Coordinated Universal Time, or UTC, is the main standard through which the world
regulates clocks and time. It strives to agree with solar time as much as possible, which
means that it is adjusted with leap seconds from time to time.

• A leap second is an extra second occasionally added to UTC. As of April 2019, 27 leap
seconds have been inserted since 1970.

• Unix time (also known as POSIX time, or UNIX Epoch time) is a system for describing
a point in time. It describes each point as the number of seconds elapsed since January
1st 1970 00:00:00 UTC (the epoch) minus leap seconds. Every day is treated as if it
contains exactly 86 400 seconds, including the days when a leap second is introduced. It
is used widely in Unix-like and other operating systems and file formats. However, Unix
time is not a true representation of UTC, as a leap second in UTC shares the same Unix
time as the second which came before it.

Consider now the following facts, which, when taken together, yields a disturbing picture.

1. Regulations (EEC) No 3821/85 and (EU) 799/2016 stipulate that time is to be measured
in UTC (Figure 15.1).

Figure 15.1: Article 2 of Appendix 1 of Regulation 3821/85, equivalent to Article 2 of Appendix
1 of Regulation 799/201.

2. All tachograph analysis programs, without exception, use Microsoft DateTime technology
to convert integer TimeReal numbers recorded in the vehicle files to UTC formatted time.
(This was accepted about software used to fine drivers by the German BAG in a court
hearing on 08/Feb/2019.)

However, Microsoft states in its software’s documentation that no leap seconds are con-
sidered (see Figure 15.2). Hence, it clearly does not follow the UTC standard.

3. Formal Vindications S.L. developed a short-term solution for the problem mentioned
above: a tool to convert TimeReal to UTC and UTC to TimeReal, as it is defined in
Regulations 3821/85 and 799/2016, with the same functionality as Microsoft’s. The goal
is to formally verify this patch, something that Microsoft will never do.

129

Figure 15.2: Fragment from Microsoft’s time library technical specifications.

We can offer this tool as open source and for free, because we are receiving fund-
ing from the European Union to develop the software homologation concept.

4. Proving that tachographs do not work in UTC is easy. Tachographs violate the Activity
ChangeInfo requirement. To demonstrate this, anyone can verify that the “activity-
changeinfo – currentdatetime” comes as integer multiplies of 60 in all tachograph models
and versions. Therefore it is impossible to be in UTC at XX:00.

Figure 15.3: Screenshot from Police Controller®
.

Figure 15.3 shows the patch developed by Formal Vindications S.L. in action:

(a) The first column, TimeReal, shows the integer number in the vehicle file.

(b) In the second column, Leap, the integer number is converted to UTC with the
verified software developed at Universitat de Barcelona.

(c) On the other hand, the third column, No Leap, has the integer number converted
to Unix with the verified software developed at Universitat de Barcelona.

(d) Finally, the fourth column, Unix Time, prints the integer number converted to
Unix by Microsoft. As we can see in Figure 15.3, columns 3 and 4 coincide.

5. Does the Unix vs. UTC issue mean that there is a 26 to 27 second delay on the time
measured by tachographs? Are there further consequences? Yes. Unfortunately, there
are vast consequences.

Let us now recall Requirements (41) and (42), printed in Figure 15.5. They were already
mentioned in Section 14, and state how to obtain the activities performed at each minute given
the activities performed at each second.

130

Figure 15.4: Article 2.1 of Appendix 1 of Regulation 3821/85, equivalent to Article 2.1 of
Appendix 1 of Regulation 799/2016.

Figure 15.5: Article 3, Paragraphs 041 and 042 of Regulation 3821/85, equivalent to Article
3.4, Paragraphs 51 and 52 of Regulation 799/2016.

Note that “calendar minute” is not used in all the translations of the Regulations, at least not
in the Spanish and Italian ones. If we built a tachograph using the “calendar minute” interval,
we will obtain different results than if we compute the data using UTC or Unix.

By running extensive tests, we concluded that the following tachograph models have this prob-
lem:

• Continental with Software 3037;

• Stoneridge with any software version from P5HM if W < 7200.

For other tachograph models we can not prove this with full certainty, because they have bigger
problems: they can be moving with speed 0, as we have shown in Section 14.

We took 8 different vehicle files from the devices listed above as a sample (4 Stoneridge and 4
Continental) and we reproduced the driving time using speed, in Unix and in Unix+27 seconds.
In order to do that, we followed the following steps:

1. We used the translator from TREP04 to TREP02 described above using a Unix repre-
sentation, but with Condition 41 first, followed by Condition 42. We then matched the
activities in TREP02 (in the real file) with the ones from TREP04 of the same file.

2. Then, we used our translator from TREP04 to TREP02 again, but this time calculating
the time intervals as Unix+27 seconds, and maintaining Conditions 41 and 42 in this
order. This is not exactly the same as doing it in UTC, but it is equivalent.7

7The reason why we are not able to do it properly is explained in Section 16. This is irrelevant at this
stage because we have proved a theorem about it, which will be shown later (see The Black Hole Theorem
of European digital tachographs below and Example 4 of Section 16.

131

We have to take into account that order is paramount in mathematics. The results are
summarized in Table 15.1.

Table 15.1: Results of the experiment described above.

Tachograph
device

Vehicle
File
Number Calendar

Total number of minutes in which
the file activities don’t match our
calculations (out of 1440 minutes)

Stoneridge 1 Unix 23
Stoneridge 1 Unix+27 96
Stoneridge 2 Unix 25
Stoneridge 2 Unix+27 48
Stoneridge 3 Unix 30
Stoneridge 3 Unix+27 65
Stoneridge 4 Unix 29
Stoneridge 4 Unix+27 108
Continental 1 Unix 25
Continental 1 Unix+27 67
Continental 2 Unix 22
Continental 2 Unix+27 69
Continental 3 Unix 33
Continental 3 Unix+27 74
Continental 4 Unix 22
Continental 4 Unix+27 82

In the case of the Continental tachograph, there were two mistakes:

1. It was in Unix;

2. Even being in Unix, 00:00 did not equate with midnight.

This incredible output blew up all of our theory when we did the simulation Unix+27.

1. In all cases the algorithm calculates driving time with the same time logic that all
tachographs use (Unix), but in the order stipulated by the law (41-42). The discrep-
ancy could be in up to 33 minutes out of 1440, that is to say, about half an hour
in a 24 hour period, or a potential error percentage of 2.1%. When the order is
inverted (42-41), the results from our simulation and TREP02 are fairly similar.

2. When we use the calendar minute defined in UTC the difference can be huge in some
cases, when there were many “stops and goes”. The discrepancy could be in up to
108 minutes out of 1440, that is to say, nearly 2 hours in a 24 hour period, or
a potential error percentage of 8.33%.

With this study we can conclude that ALL FINES concerning “driving time” are put
in doubt, specially the weekly and biweekly ones.

A team of mathematicians is studying the regular behavior of driving time when comparing
Unix with UTC.

These conclusions are supported by leading independent experts consulted by the German
courts.

132

The Black Hole Theorem of European digital tachographs
Introduction: The black hole of the tachograph
In 1915 Einstein published his theory of General Relativity, which radically changed our
understanding of the universe. Later, in 1916, Karl Shwarzschild found the first solution
to Einstein’s relativity equations. In this solution there was an abnormality which was
not initially understood; today it is commonly known as a black hole. For an imaginary
observer in a black hole, time would run as normal. For another observer at a safe
distance from the black hole, in a sense, classical time vanishes in and near the black
hole.
In analogy with this we claim that tachographs also have their own solution with a black
hole. Below we exhibit a possible driver file where driving time vanishes: according to an
observer using one clock, the truck is driving, according to the very same observer but
using a different clock that runs a couple of seconds later with respect to the first, the
truck is at rest.
The theorem
In a forthcoming publication, we provided a mathematical proof that the same recording
of activities at the resolution of seconds gives totally different results if we consider
calendar minutes in UTC or in Unix. In the example shown in Figure 15.6, for instance,
the tachograph in Unix records that the driver has been driving all the time, while in
UTC it would record resting all the time.

Unixminutes

UTCminutes

seconds

n n + 1 n + 2 n + 3

n n + 1 n + 2 n + 3

d

� Rest
� Driving

Figure 15.6: A case where the same activities recorded in seconds yield opposite results
depending on the use of the UTC or Unix calendars.

The above figure should be sufficient to explain how the ‘black hole’ appears. For the interested
reader we include a technical break-down of the interval.

133

Special solution

0. T is a period of time made of several intervals of consecutive minutes after 1
January 2017, where the difference between UTC and UNIX is 27 seconds (as of
the time of writing, 1 April 2019).

1. If a driver drives in a way that in each interval of a minute for the period T is
the following: first he makes a 27 second block of REST, then a 30 seconds block
of DRIVING and lastly a 3 second block of REST, each seconds is counted in
TimeReal format.

2. If TimeReal is considered UNIX and the minutes calendar minutes in UNIX, ac-
cording to the Rules of Paragraphs 41-42 of Regulation 3821/85 (51-52 799/2016),
the tachograph should record DRIVING for each minute and consequently the
whole T period.

3. If TimeReal is considered UTC and the minutes calendar minutes in UTC, ac-
cording to the Rules of Paragraphs 41-42 of Regulation 3821/85 (51-52 799/2016),
the tachograph should record REST for each interval of calendar minute in UTC
equivalent to UNIX, and consequently the whole T period.

For the 27 second difference to the last calendar minutes of UTC of T there will
be information missing, this is filled with a block of 27 seconds of REST.

General solution.

4. The way of driving described in Point 1 is not the only form of driving which
complies with the rules in points 2-3. There are countless driving styles which
comply with Rules 2-3 and the number of solutions depends on the length of T .
And if this result can be reproduced for any period between 1970 to 2019.

5. M is any single UNIX calendar minute, if M is considered DRIVING we cannot
DECIDE if it will be REST or DRIVING in the equivalent UTC calendar minute,
unless there are speed registers from the same time periods and the tachographs
fitted apply the round-up algorithms, described earlier, to translate the impulses
into speed. Then we can DECIDE.

6. As a consequence of Point 5, we cannot DECIDE if a single minute of time from
a driver or vehicle file which records DRIVING (in the activities recorded in node
TREP02 in the vehicle file and ActivityDailyRecord in the driver file and recorded
in UNIX) should be recorded as REST or DRIVING in the equivalent calendar
minutes in UTC, unless the speed registers are available and the tachographs fitted
apply the round-up algorithms to translate the impulses into speed. In that case
we could DECIDE.

134

16 Physically impossible values: a fine of 7.500 Euro

EXECUTIVE SUMMARY
In this section, we will present several violations of Type3 in Decent Design: physically
impossible values computed and registered by tachographs. Most of the times these
impossible values do not lead to actual fines, but sometimes they do. We shall see an
obviously erroneous fine of 7.500 issued by the German police due to recording impossible
physical data.

Some of the data stored by tachographs is meant to record changes of states which are defined
in a legal framework. For instance, a tachograph could record a change of country, the change
from resting to being available, and so on. Additionally, another indispensable job that the
tachograph performs is to track and represent physical events in the physical world. While
the border between countries is agreed upon by people, the physical laws governing space and
time are independent from our deliberation. In this section we explore cases where the values
that the tachographs have recorded cannot be understood as representing physical events, or
even worse, they represent violations of the laws of physics.

Example 1.

The first example consists of a driver file downloaded in January 2007. If we look at the module
EF_Vehicles_Used we find some nonsense dates, shown in Figure 16.1.

Figure 16.1: Fragment of the module EF_Vehicles_Used of the mentioned driver card.

Example 2.

In the second example, we present the TREP05 module of a vehicle file (which contains the
technical data of the vehicle), particularly the vuCalibrationRecord, as shown in Figure 16.2.
The unexplained values are shown in Figure 16.3.

135

Figure 16.2: Data stored in TREP05 of the vehicle file.

Figure 16.3: Fragment of the data in TREP05.

In both cases we receive the value “111111111111111111111111”. According to the regulation
(Figure 16.4), the default value for unknown or not applicable content is a number of “FF”
bytes.

136

Figure 16.4: Article 2 of Appendix 1 of Regulation 3821/85, equivalent to Article 2 of Appendix
1 of Regulation 799/2016.

We could interpret the values obtained (for OdometerShort and TimeReal) as:

1. unknown; or

2. the variable’s maximum value (for OdometerShort, this is 16777215; for TimeReal, it is
07/02/2106 06:28:15 in Unix and 07/02/2106 06:27:48 in current UTC).

But these values should not be unknown according to the law. This is a common mistake.
In Figure 16.5 we present proof that the regulation states that it is compulsory to set the
newOdometerValue with a minimum value of 1 km in any calibration. Hence the value of
newtimeValue must be known.

Figure 16.5: Article 5 of Regulation 3821/85, equivalent to Article 6.5 of Regulation 799/2016.

Upon seeing this example we can reach the following conclusion: Under the assumption that
the tachograph is correctly following the specifications in the regulation, then it is recording
physically impossible values. This would constitute a violation of Type3 in Decent Design.

This problem is not negligible and might have severe consequences. At the end of the section,
we include a fine of 7500€ issued by German BAG for “not downloading the digital data of
the vehicle in the last 90 days, according to regulation 581/2010, Article 1”. This accusation
was based on the information of a file downloaded by police officers during a road control. The
corresponding information can be found in the TREP01 module of the vehicle file. In Figure
16.6, we can see this information both in the vehicle file downloaded by BAG on the day of the
control and in the vehicle file downloaded by the company 64 days earlier:

137

Figure 16.6: Information stored in TREP01 as seen in Police Controller®.

From this, we can notice that, as seen in Row 4-Slot-status when the file was downloaded, on
the one hand File B was downloaded with a Company Card inserted in Slot 2 on 07/Dec/2016
07:22:30 (UNIX time), while on the other hand, File A was downloaded using a Control Card
in slot 1 on 09/Feb/2017 22:34:53 (UNIX time). The difference between both dates adds up to
exactly 64 days, 15 hours, 12 minutes and 23 seconds, so it is not surpassing the maximum of

138

90 days stipulated by Article 1 of Regulation 581/2020. Why then, was the company fined for
not downloading the file for more than 90 days?

By observing the previous download of the file (Row 7 Details of the previous download of
the file of Figure 16.6), we see that the downloadingTime is set to 07/02/2106 06:28:15. The
software used by the BAG police interpreted this as “never downloaded before”. With no
interference from any software, just by reading the plain data, we can see that the file was in
fact downloaded by the Company, with identification RUP0000000229-1-0-0 (RUS) and on the
already mentioned date, 07/02/2106, 06:28:15, which is the bit value "1111...1111" mentioned
above in this example. This information is contradictory: if the tachograph indicates that the
file was downloaded, this must have happened in a moment of time from the past, not from
the future. This cannot indicate an unknown value, hence it is, on the contrary, a mistake, a
physically impossible value.

But we proved that it was also downloaded in December, which is not saved on the file down-
loaded by the police in vuDownloadActivityData®, so then, supposedly, it was saved in another
download later, but with a mistake in recording.

To sum up, the software used by the BAG did an “intelligent interpretation” of the data, instead
of merely displaying its actual values: this, along with the physical impossibility of values like
the ones shown in this example, is what lead to the unjust fine.

This case has been brought to court by lawyers from a european legal services provider and it
is expected to be success-fully settled in the light of this evidence.

Example 3.

Here we have another example. As seen in Figures 16.7, 16.8 and 16.9, a driver card registered
as issuing date 27/10/2017 at time 00:00:00, while the card’s validity had begun by 21/11/2013,
also at 00:00:00.

Figure 16.7: Data stored in EF_Identification of the driver card.

Figure 16.8: Data stored in EF_Places of the driver card.

139

Figure 16.9: Data stored in EF_Driver_Activity_Data of the driver card.

As we can see, the card contains activities that, if correct, took place before the card issuing
date. Again, interpreting this data as representing actual physical events implies temporal
loops, or other kinds of impossible constructions. So, what does this data mean, since it is
indeed physically impossible?

Example 4.

Out last example is from a vehicle file. See Figures 16.10 and 16.11.

Figure 16.10: Data stored in the TREP02 module of the vehicle file.

Figure 16.11: Data stored in the TREP02 module of the vehicle file.

This data must be set at 00:00 according to the regulation (see Figure 16.12), not at 23:59:59.

140

Figure 16.12: Article 2.115 of Appendix 1 of Regulation 3821/85, equivalent to Article 2.170
of Appendix 1 of Regulation 799/2016.

This mistake has two implications:

1. TimeReal is not in UTC, even though it should be;

2. Although it is in Unix time, it does not work properly under this standard.

This is not a negligible mistake, even though we are talking about only one second. This means
that the day is different and leads to different kinds of problems, since the activityChangeInfo
is registered in minutes. What happens is that when there is a new activityChangeInfo entry,
we must decide in which day to add the minutes.

If the current time is 15/Jan/2019 23:59:59, should we add the minutes to 15/Jan/2019 or to
16/Jan/2019? Police Controller® adds them to 16/Jan/2019, but is this correct? Besides, this
solution does not allow a full use of the UTC system.

All the vehicle files in our big repository of files have at least one value which
is not physically possible.

141

17 The time zone problem

EXECUTIVE SUMMARY
There is no specification that stipulates how software should deal with changes between
time zones. Software used by authorities to check ddd files and search for infractions show
dates in local time. Due to this lack of specification, we need to ask the software engineer
team of each program to know how this issue was solved. But if there is no specification
telling us how to perform this conversion, can we guarantee that these different programs
are working according to the regulation? Whenever something is not specifically
written in the regulation, the software engineers are ‘free’ to do what they
want.

The last problem of this document concerning the flaws and failures of the tachograph tech-
nology and its inadequacy with respect to Regulations 3821/85 and 799/2016 is related to the
incompatibility among different time zones.

As we have seen in Section 15, tachographs measure time according to the Unix standard (even
though Regulations 3821/85 and 799/2016 stipulate that it should be measured in UTC).
Regulation 561/06, that regulates the working conditions of drivers, works according to the
local time (which makes sense, since the drivers work in different local time zones). But a
question arises here: how should the translation from Unix or UTC into local time
zones be brought about?

Software engineers and lawmakers might be surprised to see this topic discussed here, but there
are some issues that must be taken into account:

1. Which software is responsible for translating from TimeReal (integer number in Unix or
UTC) into a concrete time zone? Microsoft Time (mentioned in Section 15), which does
not even work in UTC? Is it verified? By whom?

2. When is the translation from Unix or UTC to a concrete time zone performed? Before
the calculations? Or at the end, when all calculations are done and the fines are already
issued? Depending on the answer, we may obtain different results. To see this, let us first
consider the following set of activities as given in Table 17.1:

Table 17.1

23:30 27/10/2018 BREAK/REST UTC
00:55 28/10/2018 DRIVING UTC
01:05 28/10/2018 BREAK/REST UTC
22:00 28/10/2018 WORK UTC

Now, also assume we don’t have any of the instances outlined by Cut theory (see Section 3).
If we define the driving time of an interval as the duration of the driving activity until the next
non-driving activity, then we obtain the following situation:

[02:55, 03:05] → 10 minutes of driving in UTC

If we translate UTC time to the United Kingdom - Portugal Time Zone (UTC +0), (taking
into account the daylight saving time change that took place on 28/Oct/2018) we obtain
the results in Table 17.2:

148

Table 17.2

00:30 28/10/2018 BREAK/REST UTC +0 local
01:05 28/10/2018 BREAK/REST UTC +0 local
01:55 28/10/2018 DRIVING UTC +0 local
22:00 28/10/2018 WORK UTC +0 local

However, now if we use the same definition of driving time used above, we obtain:

[01:55, 22:00] → 20 hours and 5 minutes of driving in UTC +0

In short, we have gone from a 10 minute long drive to 20 hours and 5 minutes of driving,
a clear violation of the law.

We have to highlight that:

• There isn’t a perfect and definitive solution for this problem, since the time change occurs
at one point or another. This same driving time duration change can also happen when
a driver moves from a country or region to another in a different time zone. Police
Controller® notifies the user when this happens so that they are aware of this potential
conflict.

• As we have mentioned in section 15, software developers in charge of designing the tacho-
graph technology use Microsoft’s time library to solve all problems related to time. How-
ever, this is not the perfect solution to many of the tachograph problems dealing with
time, as we have shown in the present section and in section 15.

• Developers tend to fall into the same error: to think that Microsoft is the perfect solution
for all issues concerning time management. As we have shown, it is not.

We have a proposal to solve this problem. Although it is not a perfect proposal, at least
it guarantees the rights of drivers in cases involving fines and penalties

149

18 Notes about problems concerning Regulation 561/06

EXECUTIVE SUMMARY
Having analyzed in depth some of the problems concerning Regulations 3821/85 and
799/2016 and the functioning of the tachograph in the previous sections, it is now time
to focus our attention on Regulation 561/06. This law stipulates the acceptable working
conditions of truck drivers: how many hours per day and week they are allowed to drive,
how many hours per day and week they should rest, how the breaks must be divided,
etc.
As we will see in this section and the following ones, the problems concerning this regu-
lations are even worse than the ones in the functioning of the tachograph. In particular,
in this section we will draw attention to the fact that Regulation 561/06 cannot be
computed and its definitions are problematic.

We have shown the incredible problems concerning the technical specifications in Regulation
3821/85. We can say without doubt that those troubles are only anecdotal when compared
with the catastrophic consequences of Regulation 561/06. Millions of euros in unjust fines
are issued every year against truck drivers and truck companies due to inconsistencies in the
application of this regulation. Therefore, the problems we talk about in these sections are far
from negligible.

The main problem is that Regulation 561/06 is meant to be a quantitative law. Regulation
561/06 has to be computed. It needs to be translated into algorithms. While in Regulation
3821/85 the technical specifications are written in ISO style (a format that easily lends itself to
a computable environment), there hasn’t been any effort to articulate the Regulation 561/06
in a formal way.

The consequences are clear: it is impossible to be sure that the translation of Regulation 561/06
into algorithms is actually correct. What engineers have to do with this regulation is to im-
plement in mathematical terms rules that can not be consistently translated into mathematics.
This means that when engineers program Regulation 561/06, they are creating a new law.

Regulation 561/06 cannot be written in a formal way, and it cannot be written as software.
The engineers writing the software intended to apply it are the real lawmakers! The resulting
software is used by police officers, independently of it being verified or not. Finally, the software
is the one that ultimately decides who is or is not guilty.

Take the note from the Austrian Police mentioned in the introduction (Section 1), where it
is admitted that the calculation of driving time and rest is carried out automatically by the
DKO System program. The program indicates the infringements and their severity. The police
officer is not authorized to correct them except in extreme circumstances (if the driver has
made manual annotations, for example).

Let us see some examples regarding dubious or problematic definitions that appear in Regula-
tion 561/06.

Example 1. The continuous driving time.

The infringement of Article 7 (see Figure 18.1) is the cause of the majority of fines imposed on
European drivers.

150

Figure 18.1: Article 7 of Regulation 561/2006.

Millions of drivers have received fines for violating Article 7. We should also say that we have
found five absolutely different versions of Article 7 depending on which software
was used by the police officers. All of them thought they were acting according to the law,
but reality demonstrates that there have been five different interpretations of this article.

This article can not be represented according to splitter theory, a mathematical framework to
model quantitative laws. When a driver is stopped by police officers, he relies purely on luck
regarding the software and interpretation the police is using to interpret and so implement
Article 7. This is pure legal arbitrariness.

Example 2. The definition of “multi-manning".

The definition of multi-manning provided in Regulation 561/06 is printed here in Figure 18.2.

Figure 18.2: Part of Article 4 of Regulation 561/2006.

Two problems arise in this definition:

(a) Regulation 561/06 is trying to define driving and rest periods for a driver. In this article
there no independent definition of multi-manning for a driver, which would lead the
software engineer to understand that the terms “driving” and “rest” seem to have been
created for the vehicle.

(b) The definition of “multi-manning” refers to the concept of “multi-manning”. A concept
can not be defined in terms of itself.

The paragraph reads “For the fist hour of multi-manning the presence of another driver
or drivers is optional ...”. However, of course, we could understand the text to mean not
the concept of multi-manning, but to the mode set on the tachograph. But this is not less
problematic than defining a concept in terms of itself (because the data on the tachograph
is meant to represent a moment when the concept applies).

151

Nevertheless, assuming that this is the text’s intention, this raises another programmer’s
nightmare. Since this paragraph belongs to an Article 4 whose express and explicit
purpose is to define terms, we raise the following questions:

• Consider a single driver in multi-manning for more than a full hour, exceeding the
optional period specified in the second part of the paragraph. Does this constitute
an infraction, or is the previous hour-long period re-defined as driving as “single”
instead “multi-manning”?

• If the previous data can be re-defined, can a single driver then re-activate the “multi-
manning” mode, hoping that the other driver or drivers will embark within the
following hour?

These issues are crucial. Engineers must have a hard time working out an algorithm
from a definition like this. The point is that whatever they decide are adequate answers
to these questions is unaided and independent from the Regulation or the law-drafting process
itself. However, it is somehow meant to implement it. The engineers are not provided any
disambiguation of what this text could mean.

152

19 French Black March

EXECUTIVE SUMMARY This example shows how by a change in the interpretation
of the law, the authorities can generate an undesirable situation. From this we have
learned how a regulation without clear computable premises can lead to a fiasco. As a
result, some of the fines involved in this case have been retracted.

In March 2016, trucks driving with 2 drivers, that is, lawfully engaged in multi-manning, were
unjustly fined in France. This was due to a recent new interpretation of Regulation 165/2014,
made by OCTET, that considered that a change in the driving status from DRIVING to
AVAILABLE did not interrupt the continuous driving period between two rests/breaks. This
new interpretation had fatal consequences for trucks with two drivers alternating between driv-
ing and being available as copilot. During this period, a major european legal service provider
paid on the road between 10/Mar/2016 and 20/Mar/2016 212.000€ in 27 fines.
Finally, on noticing such unexpected consequences of the recent sudden change
in the interpretation of the law, OCTET retracted said new interpretation.

Below, we can observe a particular fine that was delivered to a Dutch truck in Champigneulles
on 12/Mar/2016 with the following charges:

(a) 9.750€ for continuous driving time for one driver;

(b) 6.000€ for continuous driving time for the second driver.

The Court finally canceled the fines on 31/Jan/2017 and 14.969€ (out of the total 15.750€)
were recovered. The sentence along with the fine can be found attached at the end of this
section.

Moreover, attached below, we have the following: (i) an example of a fine issued during the
aforementioned period; (ii) the DREAL official document announcing that the new regulation
165/2014 did not change the interpretation of “Guidance Note 2” in team driving (while the
application of the new interpretation was ongoing.)

Furthermore, a client of the same european legal services provider had another truck stopped on
09/Mar/2016 at the same location with the same fines:

• 11 cases for not resting 45min (750€ each);

• 2 exceeding continuous driving time (135€ each);

• 1 overtaking another vehicle (45€);

• 1 breaking security distance (45€).

TOTAL: 8.790€.

In this second fine the Tribunal canceled the driving time fines and set a bail for the last 2 fines
(this sentence is also attached at the end of this section):

Ordonnance penale = 10.000€.

(a) 5.000€ for overtaking another vehicle;

(b) 5.000€ for breaking security distance.

153

20 Spanish fine for weekly rest period

EXECUTIVE SUMMARY In this section we present an example of a fine with a
happy ending. In this case, a Spanish driver received a fine for not having rested enough
within a week. However, depending on how the control period is selected and how the
weekly rests are distributed, one can either conclude that a fine has to be issued or not.
This shows that the law is non-local, which has some important consequences: the driver
could be fined and not fined at the same time. The Tribunal of Valladolid acknowledged
this fact, which, taken together with the lack of homologation of the software used by
the police officers in charge of issuing the fine, lead to the withdrawal of the fine.

A Spanish driver was fined on 25/Nov/2015 with a monetary sanction of 1500€ for the fol-
lowing reason: the reduction of the weekly rest period between 16:43 06/Nov/2015 and 16:43
12/Nov/2015. A weekly rest period of 25h03min (longer than 24h but shorter than 30h) was
taken between 14:44 12/Nov/2015 and 15:47 13/Nov/2015 implying a reduction of more than
9h in the weekly rest times, as seen in Figures 20.1 and 20.2:

Figure 20.1: Excerpt of the fine describing the infraction

Figure 20.2: Excerpt of the fine indicating the total amount to be paid

The text of the fine shows the lack of mathematical arguments in the analysis of the software.
Legally, the driver is able to select the week to which a weekly rest period is attributed to, so
then there are two possibilities:

1. Apply the distribution theory to select the best possible distribution for the driver. This
distribution affects all 4 weeks of the control in chain.

2. The fine becomes a non “local” fine: depending on how the biweek is calculated, the exact
same driver activity data becomes either legal or illegal. We have, then, the paradoxical

172

situation in which a rule can output contradictory evaluations depending on how it is
implemented.

In this case, since the control was on 25/Nov/2015, the software should have processed the
following:

Rest distribution among fortnights
0-1 02/Nov/2015 - 16/Nov/2015 Max1: 45:0 (0) Max2: 25:58 (7)
1-2 09/Nov/2015 - 23/Nov/2015 Max1: 45:3(15) Max2: 40:21(19)
D(19) to compensate: 4:39
2-3 16/Nov/2015 - 30/Nov/2015 Max1: 580:56(23) Max2: 45:3(15)
D(19): Duration 4:39 / Compensated with L(23) / Duration: 535:56

Regarding the REST period,

0- 02/Nov/2015 12:19:50 04/Nov/2015 09:20:00 45:0
7- 09/Nov/2015 13:06:00 10/Nov/2015 15:04:00 25:58
15- 16/Nov/2015 10:18:00 18/Nov/2015 07:21:00 45:3
19- 21/Nov/2015 11:41:00 23/Nov/2015 04:02:00 40:21
23- 26/Nov/2015 19:03:00 20/Dec/2015 23:59:59 580:56

For this distribution of weekly rest periods no fine can be imposed.

Recently, on 27/Feb/2019, the Tribunal of Valladolid, decided to cancel the fine. This was
due to the fact that the Tribunal ultimately accepted the idea of the defense about the lack
of homologation of the software used by the authorities in charge of issuing the fine. Hence,
this entailed the lack of justification of the fine itself. This evidence was considered sufficient
to cancel the fine: see Figure 20.3.

173

Figure 20.3: Excrept N. Sentence: 30/2019, CONTENCIOSO/ADMTVO court. N. 4 of Val-
ladolid (Spain). The two present paragraphs argue that the tachograph has internal mistakes,
therefore, the output data cannot be trusted. It places special attention to the lack of homolo-
gation (of both tachograph and the software used by the authorities) and acquits the defendant
of the entire accusation

.

We should take into account that these occurrences in Spain are also happening all over the
European Union. In the the table below, we show examples of fines from other countries of the
EU regarding the same problem.

We must recognize that, regarding the weekly rest period,

• There can not be any fine not containing the distributions of the weekly rest among the
different possibilities of the weeks of the whole period selected.

• The distribution is not local, and depends on the period selected.

Taking into account the complexity of this fine, here we will show how the different softwares
used by police officers to fine drivers are dealing with this fact.

Legal Provider
Fine ID

Text in original lan-
guage

Translation into En-
glish

Country

12653 Prise insuffisante
supérieure à 9 heures du
temps de repos hebdo-
madaire normal de 45
heures.

Lack of at least 9 hours
of the 45 hours normal
weekly rest.

France

174

10693 en l’espèce, après son re-
pos hebdomadaire réduit
de 24 heures 21 prenant
fin le 12 janvier 2014, et
après une nouvelle série
de 6 périodes maximum
de 24 heures de travail,
soit le 18/01/2014, Mon-
sieur XXX n’a pris qu’un
repos de 24 heures 02 au
lieu de 45 heures

In this case, after a re-
duced weekly rest of 24
hours 21 which ended on
the 12th of January 2014
and after 6 other periods
of 24 hours of work, on
the 18th of January 2014,
Mister XXX just took a
24 hours 02 rest and not
a 45 hours

Belgium

11154 (Fine
against the
driver)

Es wurde festgestellt,
dass sie die regelmäßige
wöchentliche Ruhepause
von mindestens 45 Stun-
den nicht eingehalten
haben. In der Zeit vom
12.10.2015, 00:00:00 Uhr
bis 25.10.2015, 23:59:00
existiert keine ausre-
ichende regelmäßige
wöchentliche Ruhepause.
In diesem Zeitraum
wurde nur eine unzure-
ichende wöchentliche
Ruhezeit von 26 Stun-
den und 29 Minuten
eingelegt. Dies stellt
daher anhand des An-
hanges III der Richtlinie
2006/22/EG i,d,g,F,
einen sehr schwerwiegen-
den Verstoß dar.

It was detected that you
did not take the regu-
lar weekly resting time
of at least 45 hours. In
the time spanning from
12.10.2015, 00:00:00 un-
til 25.10.2015, 23:59:00
there does not exist a
regular weekly resting
time. In this time you
only took an insufficient
weekly rest of 26 hours
and 29. Regarding the
Anex III of the directive
200622/EG this is a very
heavy infraction.

Austria

10374 (Fine
against the
driver)

In der Zeitspanne vom
01 Juni 2012 bis 8 Juni
2012, die vorgeschriebene
wöchentliche Ruhezeit
nicht eingehalten.

In the time period from
1 of June until 8 of June
the weekly resting time
was not taken.

Switzerland

175

ME-114672 W dniu xxx o godzinie
xxx w miejscowości xxx,
został zatrzymany do
kontroli samochód xxx o
numerze rejestracyjnym
xxx, którym kierowała
załoga dwuosobowa tj.
xxx i xxx. W toku
kontroli ustalono, iż
kierowcy pojazdem tym
wykonywali międzynar-
dowy transport rzeczy
na rzecz firmy „xxx”.
Kierowcy okazali do
kontroli m.in. karty
kierowców z tachografu
cyfrowego. Analiza
zawartych na nich
danych, po uwzględnie-
niu zdarzeń lub błędów
w postaci: przerwa
napięcia, wykazała, iż
kierowcy w przyjętym
okresie rozliczniowym
odebrali jedynie 24
godziny i 23 min-
uty nieprzerwanego
odpoczynku tj. od
godziny 07:47 dnia
18.08.2015 r. do godziny
08:10 dnia 19.08.2015 r.
czasu UTC+2, podczas
gdy w niniejszym przy-
padku kierowcy winni
byli odebrać minimum
45 godzin nieprzer-
wanego odpoczynku.
Oznacza to, iż kierowca
skrócił tygodniowy czas
odpoczynku o 20 godzin
i 37 minut.

On xxx at xxx in xxx a
truck with license plate
xxx was stopped for a
control. This truck
was driven by 2 drivers,
who were in team driv-
ing mode. During the
inspection, the Police
checked that the vehi-
cle was making interna-
tional transport of goods
for the company xxx.
The drivers were asked
to show for inspection,
among other documents,
their digital driver cards.
During analysis of the
relevant files containing
those cards, taking into
account errors like break
tension, it was discov-
ered that in the ana-
lyzed period, the drivers
took a weekly rest which
continuously lasted only
24 hours and 23 min-
utes, from 07:47 a.m. on
18th of August of 2015
to 08:10 a.m. on 19th of
August of 2015, whereas
in this case the driver
should take a minimum
of 45 hours of uninter-
rupted rest. This means
that the driver reduced
20 hours and 37 minutes
from the weekly rest pe-
riod.

Poland

ME114691 Insufficient Weekly Rest,
2/8/2015

Insufficient Weekly Rest,
2/8/2015

UK

12134 Dva za sebou následující
zkrácené týdenní

Two consecutive reduced
weekly rest periods

Czech Republic

176

21 Belgium Fine for weekly rest

EXECUTIVE SUMMARY On 27/May/18 various drivers of a Baltic company were
fined approximately 17.000 € in total. Having taken their regular weekly rest of 45h in
the cabin and not having properly performed the calibration of the tachograph, they had
allegedly infringed Art 8 of Reg 561/06. The fine was not canceled, but the EU opened
a file against Belgium authorities.

In Figure 21.1 we can see the charges imposed to each driver:

Figure 21.1: Monetary sanctions and charges per driver

Without the drivers being fully aware or informed of the consequences, the fines were paid as
“innings”. Though this amounts to an admission of guilt, no official report is produced and
there is no right to appeal. A leading european legal services provider tried to open the cases
and take them to court on the basis that the “Inning” was unfairly forced on the drivers by
the Belgian police, in a foreign language, and furthermore that they did not understand the
legal implications. To date, the Belgium authorities determined that the fines were final and
not open to discussion. Neither the police or the Prosecutors will enter into further dialogue.

1. THE FINE PROCESS IN BELGIUM

Consignment or Inning: If an infraction is detected the driver is given the choice between:

1. Deciding to take his case to court, called “Consignment”. The authorities will write an
official report. If the driver chooses consignment he must pay a court deposit immediately.
If he is acquitted at court then the money is refunded; if convicted, the money is used to
pay the fine, plus court costs.

2. Deciding not to go to court and immediately paying the fine, called an “Inning”. The
authorities will not write an official report. If a driver chooses innings he or she is
accepting the infraction and any possibility for a future court case is thereby excluded.

Right to Interpreter: The driver is entitled to an interpreter to ensure he or she understands
the alleged infractions and the difference between consignment and inning.

2. THE CONTROL

On 27/May/18 the Belgium police controlled the drivers at a parking site near Rekkem.

184

The police marked the fines as Inning, a concept which was not explained to the drivers. No
interpreters were provided. The fine paperwork is attached to this report.

If the drivers did sign it was because the police took advantage of their dominant position –
the company needed its vehicles on the road as soon as possible, and often police officers refuse
to release vehicles or to return paperwork until it is all signed. Furthermore, the company paid
under the assumption they could later appeal to the Belgium courts.

3. AFTER THE FINES

The leading european legal services provider later instructed a Belgium lawyer to open the
cases and appeal to court on the basis that Inning was unfairly forced upon the drivers
without an interpreter present. Furthermore, on analysis of driver files and vehicle files, the
majority of drivers were not taking their regular weekly rest of 45h, but their reduced weekly
rest of at least 24h, which is perfectly legal. And three of them were forced to sign that
they were responsible for the mistake in calibration of the tachograph. However, the truck is
owned by the company, who is usually the responsible for the legal maintenance. Even so, in
this situation, it is nevertheless defensible that the company was not responsible, since the
calibrations could have been performed at the workshop agreed by Latvia. It seems then
that at least some of the fines were incorrectly issued.

Moreover, the Belgium automatic tachograph analysis software has not been ho-
mologated. To attest to this fact, we have at least two cases in French jurisprudence (among
others) where fines have been canceled because the police tried to rely upon evidence coming
from their automatic download software, OCTET.

Art 6 of the European Convention on Human Rights also provides for the right to a fair hearing
and the right to defend oneself. In order for the drivers to exercise these rights they require
sufficient evidence of the breaches of law to allow them to offer a reasonable defense. In failing to
provide such information the Belgium Police erred in its function of applying the law correctly.

A lawyer from the same legal services provider wrote to the Belgium Road Police, the
Labour Prosecutor and the Prosecutor General’s Office to get their official position on the
case. No response was received for months until on 27.02.19 when a labor prosecutor from the
Openbaar Ministerie responded that “all fines are final and therefore not open to
discussion. Neither the police nor the Prosecutors will communicate this
matter any further”. A copy of the response is attached at the end of this section.

Now that we know the Belgian stance, we will make a formal complaint for breach
of EU law to the European Commission and consult with our lawyer as to the next
steps in the national courts in Belgium.

4. ANALYSIS OF THE TACHOGRAPH FILES

Our initial analysis for the fortnight of 14/May/2018 - 27/May/2018 is noted below in Figure
21.2:

185

Figure 21.2: Relevant data from the each of the driver files

186

22 Driver definition: What is a driver digitally?

One other problem that concerns us is the lack of a proper definition of the term ‘driver’.
What exactly is a driver? What are the characteristics in a driver card which uniquely
identify it? In this section we try to make sense of this term and compare different
possible characterizations of it.

Initially, we could come up with a definition of ‘driver’ based on the
HolderSurname+ HolderFirstNames variables. However, this definition has a specific limita-
tion: many nodes of the vehicle digital information (for instance, TREP03) contain information
about drivers, but not in terms of those variables.

To overcome this limitation, an alternative option is to make a definition based on the
OwnerIdentification® node, which occurs in all the nodes where there is any driving ac-
tivity. However, upon inspection, this has a clear limitation too: in our database there are
plenty of driver files and vehicle files with the same OwnerIdentification®, despite belonging
to different drivers working in different countries.

Finally we could consider defining the driver only as the module which has CardType® = driver.
But we could also find a limitation with this definition: there are other kinds of cards (workshop
workers, for instance) held by workers who can also drive, and hence the tachograph registers
their driving activities in the vehicle file. This definition of ‘driver’ is therefore also rendered
insufficient.

Each software used for reading and interpreting data from tachographs has its own definition
of the ‘driver’. The definition given below is, in our opinion, the most complete and detailed
definition of what a digital driver is. This should be included in any good technical specification
(and is the one used by Police Controller®):

A “driver” is a person who performs the activities connected with driving the vehicle, regardless
of the card being inserted (driver card, workshop or control). A “digital driver” is a driver
who exists according to the digital information and it is defined as four different formatted
number sections (short number, driver card or CARDSHORT), which result from: CardType®,
CardIssuingMemberState®, OwnerIdentification® and CardConsecutiveIndex®. These
are included in the nodes of the downloaded files, as shown below:

• In driver files: CardIdentification® (HolderSurname + HolderFirstName required).

• From the vehicle files:

1. VuCardInsertionwithdrawal® (HolderSurname + HolderFirstName required).

2. VuOverSpeedingRecord® (HolderSurname + HolderFirstName not required).

3. VuPlaceDailyRecord® (HolderSurname + HolderFirstName not required).

4. VuFaultRecord® (HolderSurname + HolderFirstName not required).

5. VuEventRecord® (HolderSurname + HolderFirstName not required).

This implies that drivers with unknown name and surname can appear. In such cases,
HolderSurname and HolderFirstName will have value ‘UNK’. This is always the case for the
last four modules of the list above. In this situation, we assume that different values in the
nodes cardReplacementIndex® and cardRenewalIndex® are not defining different drivers.

208

The model described is the one used by the software Police Controller®. However, there is
still an unsolved problem with it. What does CardConsecutiveIndex® mean when applied to
a driver? In all the files analysed for the elaboration of this document, we have encountered
files with CardType = driver, but at the same time the value CardConsecutiveIndex® > 0.
In the table below, we show how many drivers per country from our database contained this
irregularity:

CardIssuingMemberState Nº of drivers
Belgium 5
Spain 115
Estonia 4
France 1
Finland 1
Italy 102
Latvia 2
Poland 56
Romania 1
Slovakia 2

Switzerland 35
United Kingdom 444

Russian Federation 973

Some of these instances may simply be due to mistakes, since the number of drivers containing
this irregularity is not significant compared to the amount of drivers of the country that satisfy
CardConsecutiveIndex® = 0. However, in the last three countries analysed (Switzerland, UK
and Russia) this does not appear to be a mistake, but the regular and consistent behaviour
of those countries. The reason for which this appears in the ddd files of those countries has
been asked for many times, specially to UK authorities. No answer or explanation has been
obtained.

209

23 No legal defence in France

On 08/Feb/2010, a driver was fined 135€ nine times for violating various articles of Reg. 561/06
detected by French Police control software. These fines are of type “amendes forfaitaires”, for
which there is no possible legal defence in France; the driver has no choice but to pay.

A leading european legal services provider filed a complaint to the DREAL (the ministerial
transport agents authorised to issue fines) in order to request that these fines be reviewed.

In an email from 22/Jun/2010, the DREAL expressed their agreement with the same legal
services provider: many of their fines did not proceed. However, they were never reimbursed.

This expedient was transferred to the European Commission which replied on 03/Aug/2010:
they confirmed that control software is not present in the homologation protocols and, there-
fore, they are not regulated by European legislation.

Let us observe these documents in French.

210

24 Perspectives

After having performed a deep analysis of all the irregularities concerning tachographs and
driver cards, we feel justified to summarise the following perspectives:

1. What has been analysed in this document is unfortunately not only happening in the
tachograph technology, but in all sectors of the industry (for instance the Schiaparelli
case, the Boeing failure, . . . , see the Introduction, Section 1).

2. The authorities must acknowledge the fact that it is mandatory to move from a “hardware
homologation era” to a “software verification era”.

3. Formal verification translates into a huge mathematical development. However, there is
still not enough industrial infrastructure to establish a standard for software homologa-
tion.

4. Formal Vindications S.L., a leading legal services provider and a team of scientists
working at the Uni-versitat de Barcelona (UB) tied forces to develop knowledge around
the concept of formal verification of software, particularly focused on the creation of
formally verified software to check for infractions in driver cards according to 561/06.

Substantial advances have been made, in particular regarding an experimental interme-
diate language based on so-called splitter algebra. The idea is as follows. If we can
reformulate a law and write it according to a restricted set of splitter algebra, we could
obtain a formally verified and homologated software in a semi-automatic fashion. The
following regulations have already been re-designed in splitter algebra:

• EU 561

• USA 395

• CANADA 313

• MEXICO 2-087

• BRASIL 9503

5. The informal technical specifications for this project have been already written (Core-
G-561), but a big part of it is about avoiding and excluding inconsistent inputs from
the tachograph. This represents a huge investment of time and tough decisions on data
management.

6. From our point of view, given the fact that the second generation of tachographs is coming
in force, the EU could support and invest, for the first time in history, in the creation of
a complete package of:

• A formally verified triple (Technical Specification, Software, Proof/Certificate) for
the tachograph.

• A formally verified triple (Technical Specification, Software, Proof/Certificate) for
561/06, fully compatible with the tachograph input.

212

7. The arrival of the software homologation era is unstoppable and Europe has the possibility
to become the leader in standardizing the concept of public homologation of software.

213

25 Appendix: A selection of European fines in which
human intervention was needed to correct decisions
produced by software

214

215

216

217

218

26 Addendum: Incompatibility of tachograph file inter-
pretation using UTC and Unix time

As of July 2024, new advances show that the incompatibility between UTC and Unix is absolute.

Tachographs represent moments in time using TimeReal, a format specified by Regulation
2016/799.

2.162. TimeReal
Code for a combined date and time field, where the date and time are expressed as
seconds past 00h.00m.00s. on 1 January 1970 UTC.
Value assignment – Octet aligned: Number of seconds since midnight 1 January 1970
UTC.
The max. possible date/time is in the year 2106.

Unix interpretation
For each day driver files contain a node named activityDailyRecord, which contains a
TimeReal named activityRecordDate with the date of that day, and, among other infor-
mation, a list of ActivityChangeInfo, namely the succession of activities performed by the
driver. Each ActivityChangeInfo indicates its corresponding time as an offset: the number
of minutes past midnight of that day (this saves memory).

Figure 26.1: Format of CardActivityDailyRecord from the driver file, according
to Regulation 2016/799.

Similarly, vehicle files contain the information about the activities of the day in TREP02 or
TREP22. For every day vehicle files contain a TimeReal, named currentDateTime in first
generation vehicles and dateOfDayDownloaded in second generation vehicles, and a list of
the ActivityChangeInfo.

A first observation is that activityRecordDate, currentDateTime and dateOfDayDownloaded
represent the day, but since they are a TimeReal, the date comes with a time. In Figure 26.2
and 26.3 there is an example for a driver file and a first generation vehicle file.

219

Figure 26.2: Example of data from a driver file. The value 1686009600 corre-
sponds to midnight, 2023-06-06 00:00:00 in Unix time.

Figure 26.3: Example of data from a first generation vehicle. The value
1644796800 corresponds to midnight, 2022-02-14 00:00:00 in Unix time.

From this data, how to compute in what moment the change of activity happened? To answer
this question, the following excerpt from Regulation 2016/799:

2.1. ActivityChangeInfo
This data type enables to code, within a two bytes word, a slot status at 00:00 and/or a
driver status at 00:00 and/or changes of activity and/or changes of driving status and/or
changes of card status for a driver or a co-driver. This data type is related to Annex 1C
requirements 105, 266, 291, 320, 321, 343, and 344.
Value assignment — Octet Aligned: ‘scpaattttttttttt’B (16 bits)
[...]
Time of the change: Number of minutes since 00h00 on the given day.

For example, the breakdown of one of the previous ActivityChangeInfo comes with the fol-
lowing data:

Figure 26.4: Detail of the structure ActivityChangeInfo. The field time gives
the minute offset from midnight, in this case 0 because it is a change happening
at midnight.

220

Therefore, at each ActivityChangeInfo we have a minute offset, where 0 means midnight and
it adds up from there. But midnight from what day? From the date of that node.

The moment of the activity change is computed as “midnight moment” + “minute offset from
midnight”.

Figure 26.5: More information on the examples above. Left: driver file. Right:
first generation vehicle file.

In driver files and first generation vehicle files, the TimeReal value for activityRecordDate
and currentDateTime always correspond to midnight in Unix time. For instance, figure 26.5
displays more information about the nodes in the driver file and first generation driver file from
the example above.

Then the precise time of an ActivityChangeInfo can be computed as follows for driver files:

ActivityChangeInfo[TimeReal] =

activityRecordDate[TimeReal] + ActivityChangeInfo[minute offset] · 60.

Similarly, for first generation vehicles:

ActivityChangeInfo[TimeReal] =

currentDateTime[TimeReal] + ActivityChangeInfo[minute offset] · 60.

And for second generation vehicles as well, assuming the value of dateOfDayDownloaded
corresponds to midnight:

ActivityChangeInfo[TimeReal] =
dateOfDayDownloaded[TimeReal] + ActivityChangeInfo[minute offset] · 60.

In the example from Figure 26.2, since the TimeReal of the day is 1686009600 (corresponding
to 2023-06-06 00:00:00 in Unix time1), and the minute offset is 962, we get:

ActivityChangeInfo[TimeReal] = 1686009600 + 962 · 60 = 1686067320,

which corresponds to 2023-06-06 16:02:00 in Unix time.

Now, what happens if the TimeReal of the day does not correspond to midnight? Then a
correction is needed for the calculation, since the minute offset is expressed with respect to
midnight.

This happens in practice with the Continental tachographs with software version 4 (observed
in versions 4042, 4072, 4073, 4075, and 4126). The node dateOfDayDownloaded comes as the
TimeReal of some date at 23:59:59, as the example in Figure 26.6 shows.

1Computed using https://www.unixtimestamp.com/

221

https://www.unixtimestamp.com/

Figure 26.6: Example of data from a second generation vehicle, Continental
software version 4. The value 1676419199 corresponds to 2023-02-14 23:59:59 in
Unix time.

Thus the calculations change:

ActivityChangeInfo[TimeReal] =

dateOfDayDownloaded[TimeReal, adjusted at midnight] +
ActivityChangeInfo[minute offset] · 60.

In the example, if dateOfDayDownloaded has value 1676419199, corresponding to 2023-02-14
23:59:59, 86399 seconds must be subtracted to obtain the value 1676332800, corresponding to
2023-02-14 00:00:00.

UTC interpretation
The regulation stipulates time shall work in UTC. In the examples above, TimeReal values
were interpreted as Unix time, but if they are interpreted as UTC values, the incompatibility
will become clear.

The above example in Figure 26.2, 1686009600, which in Unix corresponds to 2023-06-06
00:00:00, in UTC corresponds to 2023-06-05 23:59:33 (the difference comes from 27 leap sec-
onds). This conversion is done using the FV Time Manager2.

Thus, making the correction presented above, the time of the activity becomes:

ActivityChangeInfo[TimeReal] =

ActivityRecordDate[TimeReal, adjusted at midnight] +
ActivityChangeInfo[minute offset] · 60 =

1685923227 + 962 · 60 = 1685980947,

corresponding to 2023-06-05 16:02:00. That is, a day before the interpretation in Unix time!

This will happen in all driver files and most of the vehicle files, and shows that interpreting the
data in Unix time or in UTC changes its meaning completely.

CONCLUSIONS
When the value of activityRecordDate, currentDateTime or dateOfDayDownloaded
corresponds to midnight in Unix, i.e. when it is a multiple of 86400, the interpretation
in UTC for activities will always have a difference of 1 day.

2The FV Time Manager is a formally verified time converter that, unlike most options on the market, works
in UTC. It can be used online at https://formalv.com/TimeManager/FVTimeCalculation.

222

https://formalv.com/TimeManager/FVTimeCalculation

Glossary

Type1 in Decent Design A specification must follow the following logical-mathematical
principles and in particular should be consistent: no contradictions are entailed. A
desirable additional property is completeness: the system will decide all situations. 7, 26,
40, 71, 99

Type2 in Decent Design A specification must respect computational limits (not exceed-
ing available computation time and memory). 7

Type3 in Decent Design A specification must follow physical laws. 7, 26, 36, 40, 51, 97,
108, 121, 126, 135, 137

ddd file File extension of the vehicle and driver files. In Spain, the extension of driver and
vehicle files is tgd; in France, v1b and c1b. 37, 53, 99, 148, 209

driver card A tachograph card, issued by the authorities of a Member State to a particular
driver, which identifies the driver and allows for the storage of driver activity data. 15,
22, 33, 38, 51, 53, 60, 70, 97, 106, 121, 135, 208

driver file File containing all the information stored in a driver card. 9, 16, 23, 38, 53, 99,
106, 133, 135, 185, 208

dynamic testing Currently, the best industrial standard known to increase the quality of
written software. The technique is mainly based on a combination of imposing many
sanity checks in the programming process on the one hand, and much sample testing on
the other hand. 4

FORMALLY VERIFIED SOFTWARE condition 3 There is a mathematical proof
that the software does exactly what the specification says it should do. 9, 23, 26, 40, 62,
71, 110, 113, 125

OCTET French police computer aplications that check the downloaded data from vehicle and
driver cards. 153, 185

Police Controller® Software developed by a legal services provider that receives vehicle or driver
files as input and outputs its information, automatically detects infractions of Reg. 561/06

and irregularities contained in such files. Unlike other softwares of the kind, it allows
the user to choose between different options regarding the interpretation of data: how
driving time must be computed, what to do with activities registered during a power
supply interruption, what irregularities make a file unacceptable, etc. 12, 16, 19, 24, 36,
39, 99, 106, 110, 112, 121, 130, 138, 149, 208

software verification Software verification is a technique where you prove with mathematical
rigor that the software complies with its specification. 5

TREP01 Node of the vehicle file that stores information about the vehicle and the vehicle
file. 137

TREP02 Node of vehicle files that contains the drivers’ activities record. 51, 60, 70, 125, 131,
140

223

TREP03 Node of vehicle files that stores all the information relative to events and faults. 1,
26, 51, 60, 70, 109, 111

TREP04 Node of vehicle files that stores information relative to the speed of the vehicle. 1,
111, 125, 131

TREP05 Node of vehicle files that stores information relative to the technical data of the
vehicle. 18, 135

vehicle file File containing allyes (glos 1) the information stored in a tachograph. Memory
storage in tachographs is bigger than in driver cards and hence they contain more infor-
mation. 9, 26, 51, 60, 70, 99, 109, 111, 129, 135, 185, 208

224

	1 Introduction: dangerous software
	1.1 Software contains errors
	1.2 Towards software homologation: zero error software
	1.3 Illogical software specifications
	1.4 Computer says: Jail
	1.5 Tachographs: this document
	1.6 Serious business

	2 In which circumstances do we deem software that is not following the law illegal? An introductory case.
	2.1 Driver Card
	2.2 Tachograph

	3 Fine of 1650€ for driving 12h53min in Spain, just reading the printed ticket as proof
	4 Cut theory broken by authorities
	5 Driving for 36h and 12 minutes in Germany: 6555€ fine and 10000€ bail
	6 Diving with card not inserted for 0h00min: a 600 £ fine
	7 25000 DKK fine and driving license suspended in Denmark
	7.1 Information stored in TREP02 but not in TREP03
	7.2 Event stored in TREP03 but not in TREP02
	7.3 Information stored in TREP02 and TREP03 but with different durations

	8 355000 DKK fine and jail time in Denmark
	9 The problem of having two different activities during the same minute. Fine of 4 600 € for driving 28h10min.
	10 The unbelievable ``card not inserted'' event in driver cards.
	11 Over speeding in TREP03 in less than 60 seconds, the simplest and easiest case of verification
	12 Big divergences between TREP03 and TREP04 in Over speeding
	13 Activity time discrepancies between slot1 and slot2
	14 The definition of driving time: specific software analysis through different versions
	15 The Unix vs. UTC problem
	16 Physically impossible values: a fine of 7.500 Euro
	17 The time zone problem
	18 Notes about problems concerning Regulation 561/06
	19 French Black March
	20 Spanish fine for weekly rest period
	21 Belgium Fine for weekly rest
	22 Driver definition: What is a driver digitally?
	23 No legal defence in France
	24 Perspectives
	25 Appendix: A selection of European fines in which human intervention was needed to correct decisions produced by software
	26 Addendum: Incompatibility of tachograph file interpretation using UTC and Unix time
	Glossary

